Runtime Governance:
User Guide

T O V7= VAT 1

2. INSTAITALION .eeiii e e ettt e et et e e et e e e e e eenn 3
2.1. Setup Target ENVIFONMENTcoouuiiiiiiiei et e e e eens 3
2.1.1. IB0SS EAP or WIldfly ...eeiniiii e 3

2.2. Further ConfigUIationcoouuuiiiiiii e eneas 5
2.2.1. DAADASE ...ccovviiiiiieee e 6

2.3. Test the installation using the SAMPIES ..o 9
2.3.1. JBOSS EAP e 9

2.4. JBoss EAP Specific INfOrmationccoouiiiiiiiiiiiii e 10
2.4.1. SQL DAtabaSEceuiiiiieiiii it 10
2.4.2. CACRING ..uiiiiii e e 13

3. Visualising the Runtime Governance Informationcccoeeviiiiiii i 15
3.1. Accessing the Runtime Governance Ul ... 15
B2, SBIVICES ittt ettt oottt ettt e e e et e e e e e e eannae 16
B TR T 111 7= 11T 1P 19
3.3.1. Situation LIfECYCIE ...civvniii i 26

i ANBIYEICS et aee 26
3.4.1. DAShDOAITuiiieiiiie e 26
3.4.2. Changing the Time Frame and Refresh Cyclecccoooiiiiiiiiiiiinie, 30
3.4.3. Filtering by SEIECHONiiiiiii e 31
3.4.4. Segmenting information BY QUETYccouuiiiiiiiiiiiiii e 34
3.4.5. ADNOC QUEIIES . .ouniiii e e e e e e e e et e e et e e eanaees 36
3.4.6. Customizing and sharing the Dashboardccccoiiiiiiiiinieiiin e, 37

4. Reporting AcCtivity INfOrmationc.oiiiiiiiii e 39
4.1. Integrated ACLIVItY COIECIONuuiiiiiiiiee e 39
4.1.1. Supported ENVIFONMENLSiiiiieiiii e e e e e e e e 39
4.1.2. INfOrmMation PrOCESSOLuuiiiiiiiiieii et e e e e 41
4.1.3. Activity Validationcooiiiiiiiiiiicci e 52

4.2. Reporting and Querying Activity Events via RESTccooviiiiiiiiiiiii e 57
4.2.1. Reporting Activity INformationccooeiiiiiiiiiii e 57
4.2.2. Querying Activity Events using an EXpressionccooovvviiiieiiiiinneecinnnnn. 58
4.2.3. Retrieving an ACtivity UNItcooooiiiiiiiiii e 59
4.2.4. Retrieve Activity Events associated with a Context Valuec....... 59

B, ANAIYZING EVENTS i 61
5.1. Configuring an Event Processor NEetWOIKoviiiiiiiiiiiiiiineeiieece e 61
5.1.1. Defining the NEIWOIKiiiiiiii e 61
5.1.2. Registering the NEetWOIKoooiiiiiiiiii e 66
5.1.3. Supporting MUltiple VEISIONSciiiiiiiiiiici e 70

5.2, EVENT PrOCESSOIS ..uiitiiiiieii ettt ettt e et e et e et e e e e e eaeens 70
5.2.1. Drools EVENE PrOCESSONccvvuuiiiiiiieeiiiiiiiiiis ettt 71
5.2.2. JPA EVENE PrOCESSON ...ttt ittt et e e e e e e 73
5.2.3. Malil EVENt PrOCESSOXovuviiiiieiiiieiiii ettt 73
5.2.4. MVEL EVENE PrOCESSON ...ctiiiiiiiiie ittt e e ees 73
5.2.5. SUPPOIING SEIVICES ..cevuiiiiiiiiieeiii et e e e e e e e e e e e e eeen 74

Runtime Governance: User Guide

LR T o 1o [ToT= =P 75
5.3.1. MVEL PrediCatecoccuuiiiiiiiieciei ettt eeaees 75

6. Accessing Derived INfOrmationooiiiiiiiii e 77
6.1. Configuring Active COIIECLIONSciiiiiii e 77
6.1.1. DefiniNg the SOUICEiiiiiiiiiecei e 77
6.1.2. RegisStering the SOUICEcoiiiiiiii i e e 84

6.2. Presenting Results from an Event Processor Networkccoeeevveeiviiineninnenennn. 88
6.3. Publishing Active Collection Contents as JMX Notificationsccc.ccceveviveennn.n. 90
6.4. Querying Active Collections Via RESTc..iiiiiiiiiiiiiii e 92
6.5. Pre-Defined Active COIIECHIONScoiiiiiiiiiiiiee e 93
6.5.1. ServiceRESPONSETIMEScouuuiiiiiiii it 93
B.5.2. SIUBLIONS ..ievtnieiiiii ettt e e et e aaaan 93
6.5.3. ServiceDefiNItioNSooeuiii i 94
6.5.4. PrINCIPAIS ...uiiiiieii i 96

7. AVAIADIE SEIVICES ..ottt e e e e e e e 97
4 T - 1| 1= To = T PP 97
7.2, REPOIT SBIVEL ..ottt ettt ettt e e e e e e eaa s 97
7.2.1. Creating and deploying a report definitionccocoiiiiiiin i, 98
7.2.2. Generating an instance of the reportccoooviiiiiiiiiii e 100
7.2.3. Providing a custom Business Calendarcccoeeeiiiiiiiiiiiin e, 101

7.3. SErIVICE DEPENUENCYuiiiiiiieiiiii ettt ettt 101
7.3.1. How to customize the severity [eVelSccoiiviiiiiiiiic e 101

7.4, SHHUALION MANAGET ...eeutiiiiiii ettt e e e e e b 102
7.4.1. Ignoring situations related to @ SUDJECTcccoviiiiiiiiii 102
7.4.2. Observing situations related to @ SUbJeCtcooviiiiiiiiiiii e, 103

8. Managing The INfrasStrUCtUIeiiiiiiii e e 105
8.1. Managing the ACctivity COIECIOrcccuuuiiiiiiii e 105
8.1.1. ACHVILY COIECION ..uiiiiiiii e e e e aens 105
8.1.2. ACHVILY LOGUET .euiieiiinieieiii ettt ettt et et e e e e e e ra e e eeaans 105

8.2. Managing the Event Processor NetWOrKSco.oviiiiiiiiiiiiiiii e 106
8.2.1. Event Processor Network Managerocoeeviiieiiiinieiiiiiieeeeiin e 106
8.2.2. Event Processor NetWOrKScoooviiiiiiiiiiiiieec e 107

8.3. Managing the ACtiVe COIIECHIONSuuiiiiiiiieii e 108
8.3.1. Active ColleCtion ManNAQETccuuieiiiieiiii e e e e 108
8.3.2. ACHIVE COIlECHIONS .. oeeiieii i e 109

Chapter 1.

Chapter 1. Overview

This section provides an overview of the Runtime Governance architecture.

The architecture is separated into four distinct areas, with components that bridge between these
areas:

 Activity Collector - this component is optional, and can be embedded within an executing
environment to manage the collection of information

« Activity Server - this component provides a store and query API for activity information. If not
using the Activity Collector, then activity information can be reported directly to the server via
a suitable binding (e.g. REST).

« Event Processor Network - this component can be used to analyse the activity information.
Each network can be configured with a set of event processing nodes, to filter, transform and
analyse the events, to produce relevant rules.

» Active Collection - this component is responsible for maintaining an active representation of
information being collected. Ul components can then access this information via REST services
to present the information to users (e.g. via gadgets)

This document will explain how a user can configure these components to work together to build
a Runtime Governance solution to realtime monitoring of executing business transactions.

Chapter 2.

Chapter 2. Installation

2.1. Setup Target Environment
This section will describe how to install Overlord Runtime Governance in different environments.

2.1.1. JBoss EAP or Wildfly

« Download the App Server: JBoss EAP [http://www.jboss.org/jbossas/downloads/] distribution
(version 6.1 and 6.3 are currently supported) or Wildfly [http://wildfly.org/downloads/] distribution
(version 8.1), and unpack it in a suitable location.

* If using rtgov with switchyard, then download SwitchYard [http://www.jboss.org/switchyard/
downloads] (version 2.0.0.Final or higher) and install it into the JBoss EAP/Wildfly environment.
We recommend using the switchyard installer, which can be unpacked in a temporary location,
and run ant in the root folder to be prompted for the location of the JBoss EAP or Wildfly
environment.

@ Note
If switchyard is not installed, then you won'’t be able to use the quickstarts, which
are based around providing runtime governance for a switchyard application.

« Download the latest release of RTGov from the Overlord website [http://www.projectoverlord.io],
choosing the appropriate distribution for the target container and installation type (e.g. client
only or all). Unpack the distribution into a suitable location.

Note: The difference between the installation types is,

Value Description

client This will result in only the activity collector
functionality being installed, using a RESTful
client to communicate with a remote Runtime
Governance server.

all This will result in the full server configuration
being installed into the server, including
activity collector (for obtaining activities
generated within that server), activity server
(for receiving activity information whether
from a remote client or internal activity
collector), event processor network (to

http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/
http://wildfly.org/downloads/
http://wildfly.org/downloads/
http://www.jboss.org/switchyard/downloads
http://www.jboss.org/switchyard/downloads
http://www.jboss.org/switchyard/downloads
http://www.projectoverlord.io
http://www.projectoverlord.io

Chapter 2. Installation

Value Description

analyse the events), active collections (to
maintain result information) and a collection
of REST services to support remote access to
the information. This is the default value.

e The final step is to perform the installation of Overlord Runtime Governance. To do the
installation, use the following command from the root folder of the installation:

.linstall.sh [-Dpath=<|ocation>]

The <location> represents the folder where the JBoss EAP or Wildfly environment exists. If the
<location> is not explicitly provided on the command line, then the user will be prompted for the
information.

To uninstall, simply perform the following command in the root folder of the installation:

./luninstall.sh [-Dpath=<|ocation>]

To start the server, go to the EAP/Wildfly bi n folder and run:

./ st andal one. sh -c standal one-full.xmn

The final step is to configure KeyCloak with the Governance realm. This is achieved by following
these steps:

e Enter the URL http://localhost:8080/auth/admin/master/console/#/create/realm into your
browser

« Iffirst time using KeyCloak on the server, then enter the username admin and password ‘admin.
You will then be prompted to enter a new password (twice) for the admin user.

« When the create realm page is displayed, it will offer the ability to upload a realm definition.
Select the button and when a file dialog appears, navigate to the dist folder within the RTGov
distribution and select the governance-realm.json file.

You can also import this governance realm by providing the file as an option when starting the
server, e.g.

./ standal one. sh -c standal one-full.xm -Dkeycl oak. i nport=<path-to-
di stribution>/dist/governance-real mjson

« Once the realm has been uploaded successfully, you will be able to log in to the RTGov Ul
(http://localhost:8080/rtgov-ui) using the username admin and password admin

http://localhost:8080/auth/admin/master/console/#/create/realm
http://localhost:8080/rtgov-ui

Further Configuration

2.2. Further Configuration

The configuration properties for the Runtime Governance capability are found in the <root>/
standalone/configuration/overlord-rtgov.properties file.

Although there will be some properties that are i
specific and therefore are listed in separate sect

Common

ndependent of the installation type, some will be
ions below.

The common properties available across all installation types are:

Property Description

collectionEnabled

This property will determine whether activity
information is collected when the server is
initially started. This value can be changed
at runtime using the ActivityCollector
MBean (see the chapter on Managing the
Infrastructure).

ActivityServerLogger.activityListQueueSize

ActivityServerLogger.durationBetweenFailureR

This property defines the queue size for
pending activity lists, that are awaiting being
reported to the Activity Server.

eporévoid logs being overlorded with failure
reports, failures will only be reported

once within the defined time interval (in
milliseconds).

ActivityServerLogger.freeActivityListQueueSize

This property defines the queue size to
manage free activity lists that can be reused.

ActivityServerLogger.maxThreads

BatchedActivityUnitLogger.maxTimelnterval

This property is an integer that represents the
maximum number of threads that should be
used to report activity events to the server
(whether remote or embedded).

The maximum wait interval (in milliseconds)
before sending any held activity units to the
Activity Server.

BatchedActivityUnitLogger.maxUnitCount

All Type

The maximum number of activity units that
should be held before sending as a batch to
the Activity Server.

Property Description

ActiveCollectionManager.houseKeepinginterval

Time interval (in milliseconds) between house
keeping tasks being invoked.

Chapter 2. Installation

Property Description

ActivityStore.class The class associated with the Activity Store
implementation to be used.

Elasticsearch.server URL to the Elasticsearch server (HTTP port).
infinispan.container The infinispan container to use.
MVELSeverityAnalyzer.scriptLocation Optional location of a MVEL script used to

determine severity levels for nodes and links
within the service overview diagram.

SituationStore.class The class associated with the Situation Store
implementation to be used.

@ Note
Activity and Situation Store implementation specific properties will be discussed in
the database section below.

Client Type

This installation type is used to configure an execution environment that will be sending its activity
information to a remote Runtime Governance server using REST. The relevant properties are:

Property Description

RESTActivityServer.serverURL This is the URL of the activity server
collecting the activity events.

RESTActivityServer.serverUsername The username used to access the REST
service.

RESTActivityServer.serverPassword The password used to access the REST
service.

2.2.1. Database

This section described the configuration of the supported database options.

2.2.1.1. Elasticsearch

@ Note
This is the default "out of the box" configuration.

To use Elasticsearch as the Activity and Situation Store implementation, the following property
values need to be defined:

Database

ActivityStore.class=org.overlord.rtgov. activity.store. el asticsearch. El asti csearchActivitySto
SituationStore. cl ass=org.overlord.rtgov. anal ytics.situation.store. el asticsearch. El asticsearc

with the additional support properties:

Property Description

Elasticsearch.hosts Either has value "embedded" (the default),
or a list of <host>:<port> values representing
nodes in the Elasticsearch cluster, the port
representing the TCP transport connection.

Elasticsearch.schedule When using batched mode, the interval (in
milliseconds) between updates being sent to
the Elasticsearch server.

Elasticsearch.ActivityStore.responseSize Maximum size for the response (default value
100000).
Elasticsearch.ActivityStore.timeout "Best effort" timeout value (milliseconds)

(default value 10000ms).

Elasticsearch.SituationStore.responseSize Maximum size for the response (default value
100000).
Elasticsearch.SituationStore.timeout "Best effort” timeout value (milliseconds)

(default value 10000ms).

The following information describes the Elasticsearch clustering options that are supported with
RTGov. For more information please see http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/modules-node.html

Out of the box, RTGov starts up with an in-VM Elasticsearch node for convenience. Such a setup
is not recommended for a production environment for the following reasons:

 Elasticsearch running on the same JVM could result in resource contention, e.g. memory or
cpu, which could impact the application performance

 In a clustered or load-balanced environment we would require Elasticsearch to persist the data
to the same cluster

RTGov does not attempt to wrap or hide the standard Elasticsearch configurations. If you know
how to tweak and tune an Elasticsearch node then these configuration changes can be applied
to the appropriate location (dependent upon platform):

Description

EAP or Wildfly The configuration properties for the Runtime
Governance capability are found in the
<root>/standalone/configuration/overlord-
rtgov.properties file.

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-node.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-node.html

Chapter 2. Installation

If you want to learn how to configure and tune Elasticsearch then please reference the
Elasticsearch documentation at http://www.elasticsearch.org/guide/en/elasticsearch/reference/
current/setup-configuration.html

Some of those configuration properties that may need to be changed include:

« cluster.name: Cluster name identifies your cluster for auto-discovery. If you're running multiple
clusters on the same network, make sure you're using unigue names

« node.name: Node names are generated dynamically on startup, so you're relieved from
configuring them manually. However you can tie a node to a specific name

« path.data: Path to directory where to store index data allocated for this node
There are 3 ways Elasticsearch cluster communication can be configured within RTGov:

Local Elasticsearch embedded server

node. | ocal =t rue

This configuration does not communicate outside of the VM, only performing discovery of
Elasticsearch nodes started on the same same VM.

Client only with no local data

When you start an Elasticsearch client, the most important decision is whether it should hold data
or not. In other words, should indices and shards be allocated to it. Many times we would like to
have the clients just be clients, without shards being allocated to them. This is simple to configure
by setting either:

node. dat a=f al se

and/or

node. cl i ent=true

With this configuration, the client is cluster aware and can route its data to the responsible shards
avoiding a double hop.

Clustered client with local data

This is the default "out of the box" configuration for RTGov. This starts a simple Elasticsearch
node that can hold data and also join other Elasticsearch nodes in a cluster.

node. dat a=t r ue
node. cl i ent =f al se

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/setup-configuration.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/setup-configuration.html

Test the installation using the samples

node. | ocal =t rue

2.2.1.2. SQL

To use a SQL database as the Activity and Situation Store implementation, the following property
values need to be defined:

Property Value

‘ ActivityStore.class ‘ org.overlord.rtgov.activity.store.jpa. #PAActi vityStore

‘ SituationStore.class ‘ org.overlord.rtgov. anal ytics. situation.store.jpa.JPAS 1

with the additional support properties:

Property Description

JPAActivityStore.jndi.datasource The JNDI name used to retrieve the
datasource.

JPAEventProcessor.jndi.datasource The JNDI name used to retrieve the
datasource.

JPASi tuationStore.jndi.datasource The JNDI name used to retrieve the
datasource.

JpaStore.jtaPlatform The JTA platform Java implementation class.

Warning

As of RTGov 2.x, Elasticsearch is the main supported implementation of the Activity
and Situation Store.

2.3. Test the installation using the samples

When RTGov has been installed, try out the samples to get an understanding of its capabilities,
and check that your environment has been correctly installed/configured.

2.3.1. JBoss EAP

To install the samples into JBoss EAP go to the sanpl es folder in the distribution. You will need
to install Apache Maven [http://maven.apache.org/download.cgi] to be able to use the examples.

The key examples are explained below. Each quickstart also has a readme providing the
instructions for use.

2.3.1.1. Order Management

The sanpl es/ order ngnt folder contains examples related to an Order Management system
implemented using a SwitchYard application.

http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi

Chapter 2. Installation

The sanpl es/ or der ngnt / app folder contains the switchyard application, with some additional
interceptors to execute policies synchronously (see Activity Validators section for more
information, and the Synchronous Policy quickstart more a specific example of its use).

The sanpl es/ or der mgnt / epn folder contains an Event Processor Network (see later section for
details) that is used to convert switchyard application exceptions into "Situations", which is a form
of alert used by the Runtime Governance platform.

The sanpl es/ ordernmgnt /i p folder contains an Information Processor (see later sectoin for
details) that is used to extract additional information from message payloads, that will be useful
when analysing the activity events.

2.3.1.2. Policy

The sanpl es/ pol i cy/ sync folder contains a policy that is invoked synchronously - it determines
whether a user has invoked the service more than once every two seconds, and if so, blocks the
service invocation.

The sanpl es/ pol i cy/ async folder contains a policy for asynchronously calculating the debt
associated with a customer, and suspending their account if it goes above a defined level. The
suspended status of the customer is checked when they next invoke the service, and the service
invocation blocked if they have been suspended.

2.3.1.3. SLA

The sanpl es/ sl a/ epn folder contains a policy for determining whether a Service Level Agreement
has been violated, and if so, reported as a Situation.

The sanpl es/ sl a/ noni t or folder contains a webapp that directly integrates with the RTGov
components.

2.4. JBoss EAP Specific Information

2.4.1. SQL Database

The database is defined by the datasource configuration located here: $JBOSS HOVE/
st andal one/ depl oynent/ over | ord-rtgov/rtgov-ds. xn as part of the server installation type.

The default SQL database is the H2 file based database, and is created during the installation
of the all type.

@ Note
The following sections discuss changes to the standal one-full.xmn
configuration file. If using a clustered environment, then these changes should be
applied to the st andal one-ful | - ha. xnl instead.

10

SQL Database

MySQL

« Create the folder $JBossAS/ nodul es/ nysql / mai n.

* Put the MySQL driver jar in the $JBossAS/ nodul es/ nysql / nei n folder, e.g. mysql-connector-
java-5.1.12 jar.

« Create a module.xml file, within the $JBossAS/ nodul es/ nysql / nai n folder, with the contents:

<nmodul e xm ns="urn:j boss: nodul e: 1. 1" nanme="nysql ">
<r esour ces>
<resource-root path="mysql-connector-java-5.1.12.jar"/>
</resources>
<dependenci es>
<nmodul e nanme="j avax. api "/ >
<nmodul e nanme="j avax.transaction. api"/>
</ dependenci es>
</ nodul e>

» Edit the $JBossAS/ st andal one/ confi gurati on/ st andal one-full.xm file to include the
MySQL driver:

<subsyst em xm ns="ur n: j boss: donai n: dat asour ces: 1. 0" >
<dat asour ces>

<drivers>

<driver name="nysql" nodul e="nysql ">
<xa- dat asour ce-
cl ass>com nysql . j dbc. j dbc2. opti onal . Mysqgl XADat aSour ce</ xa- dat asour ce- cl ass>
</driver>
</drivers>
</ dat asour ces>
</ subsyst en®

e Update the rtgov datasource file, $JBossAS/ st andal one/ depl oynent s/ over| ord-rt gov/
rtgov-ds. xni , the contents should be:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<dat asour ces>
<dat asource jndi-nane="java:jboss/ datasource/ Overl or dRTGov" pool -
nane="Over | or dRTGov" enabl ed="true" use-java-context="true">
<connection-url >jdbc: mysql://|ocal host: 3306/ rtgov</connection-url >
<driver>nysql </ driver >
<security>

11

Chapter 2. Installation

<user - nane>r oot </ user - nane>
<passwor d></ passwor d>
</security>
</ dat asour ce>
</ dat asour ces>

Postgres

» Create the $JBossAS/ nodul es/ or g/ post gr esql / mai n folder.

* Put the postgresql driver jar in the $JBossAS/ modul es/ or g/ post gr esql / mai n folder, e.g.
postgresql-9.1-902.jdbc4.jar.

» Create a module.xml file, within the $JBossAS/ nodul es/ or g/ post gr esql / mai n folder, with the
contents:

<nmodul e xm ns="urn:j boss: nodul e: 1. 1" nane="or g. post gresql ">
<r esour ces>
<resource-root path="postgresql-9.1-902.jdbc4.jar"/>
</ resour ces>
<dependenci es>
<nodul e nane="j avax. api "/ >
<nodul e nane="j avax. transaction. api "/ >
</ dependenci es>
</ nodul e>

« Edit the $JBossAS/ st andal one/ confi gurati on/ st andal one-ful | .xm file to include the
PostgresSQL driver:

<subsystem xm ns="urn:j boss: donmai n: dat asour ces: 1. 0" >
<dat asour ces>

<drivers>

<driver name="postgresql" nodul e="org. postgresqgl">
<xa- dat asour ce- cl ass>or g. post gr esql . xa. PGXADat aSour ce</ xa-
dat asour ce- cl ass>
</driver>
</drivers>
</ dat asour ces>
</ subsyst ene

e Update the rtgov datasource file, $JBossAS/ st andal one/ depl oyment s/ over | ord-rt gov/
rtgov-ds. xni , the contents should be:

12

Caching

<?xm version="1.0" encodi ng="UTF- 8" ?>
<dat asour ces>
<dat asource | ndi-nanme="java:j boss/ dat asour ce/ Overl or dRTGov" pool -
nane="Over | or dRTGov" enabl ed="true" use-java-context="true">
<connection-url >j dbc: postgresql ://| ocal host: 5432/ rt gov</connection-url >
<driver>postgresqgl </driver>
<security>
<user - nane>. ... </ user - nane>
<passwor d>. ... </ passwor d>
</security>
</ dat asour ce>
</ dat asour ces>

2.4.2. Caching

The EPN and Active Collection mechanisms both have the ability to make use of caching provided
by infinispan. When running the server in clustered mode (i.e. with st andal one-ful | - ha. xm).

First step is to uncomment the infinispan.container property in the over | ord-rt gov. properties
file and set it to the INDI name of the cache container (java:jboss/infinispan/container/rtgov in the
example below). This property represents the default cache container to be used by EPN and
Active Collection Source configurations that do not explicitly provide a container JINDI name.

The next step is to create the cache container configuration, and the specific caches, under the
infinispan subsystem in the st andal one-ful | - ha. xn file. As an example, the following cache
entry for the "Principals” cache has been defined, for use with the Policy Enforcement examples:

<cache-cont ai ner nanme="rtgov" jndi-nanme="java: | boss/infini span/
cont ai ner/ rtgov" start="EAGER"'>
<transport | ock-ti meout="60000"/>
<replicat ed- cache nane="Princi pal s" node="SYNC' >
<l ocki ng isol ati on="REPEATABLE_READ"/ >
<transacti on node="FULL_XA" | ocki ng="PESSI M STI C'/ >
</replicated-cache>
</ cache- cont ai ner >

13

14

Chapter 3.

Chapter 3. Visualising the Runtime
Governance Information

This section describes how to use the Runtime Governance User Interface (Ul).

3.1. Accessing the Runtime Governance Ul

To access the Runtime Governance Ul, after the server has been started, use the url: <host >/
rtgov- ui

| overtord 10P - Login

s & D tocalno -idp! 2Bt9 3XdfukDRLCLPO%2F17g| @

JBOSS OVERLORD

Log |

Figure 3.1.

Once displayed, it will request an username and password. When successfully logged in, you will
be presented with the top level dashboard:

15

Chapter 3. Visualising the Ru...

[overtord - Runtime Gover x

\g d ID localhost: 8080/ rtqc

* JBoss Overlord Runtim nce 2 admin ¥

Runtime Governance

Runtime Governance

Welcome to the Overlord RTGov (Runtime Governance) dashboard. This page serves as a jumping off point, providing quick

access to frequently used functionality in the Runtime Governance UL

. . . .
Services Situations Analytics
Go here to get a list of all the public services currently Here you'll find a list of all the situations detected by the Here you will find an analytics dashboard to help you
deployed/monitored. system. analyse your system's activity.
Services » Situations » Analytics »

© JBoss Owverlord 2013-4

Figure 3.2.

The dashboard provides access to three types of information related to runtime governance.
These will be discussed in more detail in the following sections.

3.2. Services

The Services page lists the services that have been deployed to a service container (e.g.
switchyard) and are being monitored by RTGov.

16

Services

[overtord - Runtime Gover x

\g d ID localhost: 8080/ rtgov-ui/

* JBoss Overlord Runtim nce 2 admin ¥

Runtime Governance

Dashboard = Services ~

Application Name . . F—
Service Name A Application Interface Bindings
A v
ik {urn:switchyard-quickstart- {urn:switchyard-quickstart- wsdl/OrderService wsdi#wsdl.porttype(OrderService)
demo:orders:0.1.0}OrderService demo:orders:0.1.0}orders

Service Name
Any
Processing State

Any v

Clear All Filters

© JBoss Overlord 2013-4

Figure 3.3.
The list shows the service name, optional application in which it is contained, the external
interface(s) it implements and finally the bindings through which it can be accessed.

Note

For switchyard services, this list will only contain the public (promoted) services,
however activity information will be collected for internal component services as
well.

When a service name is selected, it will navigate to the details page:

17

Chapter 3. Visualising the Ru...

[overtord - Runtime Gover x

\g-» d ID localhost: 8080/rtgov-ui/#service Details;id=%257Burn%255C% 253 Aswitchyard-quickstart-demo255C%253Aorders%255C%2 0.1.0%257Dorders%253A J‘\i?] %]

* JBoss Overlord Runtim nce 2 admin ¥

Runtime Governance

Dashboard / Services » / Service Details

OrderService

Details Dependencies

Service Properties

Hamespace: urn:switchyard-quickstart-demo:orders:0.1.0
Application: urn:switchyard-guickstart-demo:orders:0.1.0
orders

Service Interface: wsdl/OrderService wsdi#wsdl porttype(OrderService)

References

© JBoss Overlord 2013-4

Figure 3.4.

This page shows high level information about the service, and where appropriate, any promoted
references it has to other external services.

The Dependencies tab can be used to view dynamic dependency information about the service.
This information is based on a short term rolling window, and will therefore only show the
relationships associated with recent invocations:

18

Situations

Overlord - Runtime Gover %
&

* JBoss Overlord Runtim

d ID Llocalhost: 8080/rtgov-ui/#service Details;id=%257Burn%255C% 253 Aswitchyard-quickstart-demo 255 C%253Aorders%255C% 253 &O.I.O%ZSTD-:-rders%lSS&%25\;'\3] %]

4 admin v

Runtime Governance

Dashboard / Services » / Service Details

OrderService

Details Dependencies

Generated: Mon Jun 30 10:20:06 BST 2014

OrderService OrderService Toventory Sevice
submitOrder
OrderService Logistics Service
| deliver

Figure 3.5.

3.3. Situations

This section shows the Situations that are reported when RTGov policies detect issues that need
to be bought to the attention of users.

19

Chapter 3. Visualising the Ru...

[overtord - Runtime Gover x

\g-» d l [localhost: &t)80/rtgov-uif#situations "::(‘] @ =
* JBoss Overlord Runtime C 2 admin ¥
Runtime Governance
Dashboard = Situations «
Severi
£l Timestamp
Any v ! Type Status Subject v Description
Siming & Exception UNRESOLVED {urn:switchyard-quickstart- 06/30/2014 org switchyard HandlerException:
demo:orders:0.1.0}OrderService|submitOrderERROR AM SWITCHYARDO14000: Validator
Any v 10:22AM ‘org.switchyard validate xml internal Xml
T failed: 1 validation error({s)
ype org xml.sax SAXParseException: cve-col
Any type.2.4.a: Invalid content was found sta)
with element ‘customenx'. One of '{custol
Timestamp expected
Any =] & SLA UNRESOLVED {urn:switchyard-quickstart- 06/30/2014 OrderService/dnventoryService exceeded _
Violation demo:orders:0.1.0}OrderService/lnventoryService|lookupltem AM maximum response time of 400 ms
to
10:20AM
Ar =
‘ & SLA UNRESOLVED {urn:switchyard-quickstart- 06/30/2014 | OrderService exceeded maximum respo
Description Violation demo:orders:0.1.0}OrderService|submitOrder AM of 400 ms
10:20AM
Any
Subject
Any
Properties (name=value;..)
Any
Clear All Fitters
@ JBoss Overlord 2013-4 [
1] n v |

Figure 3.6.
The left hand panel provides a variety of options for filtering the list of situations.

The list contains the following columns:

« Severity - an icon to indicate how severe the situation is.
* Type - identifies the nature of the situation (e.g. SLA Violation, Exception, etc).
 Status - where the situation is in its lifeycycle (see further down for description of the lifecycle).

» Subject - the subject of the situation, which will generally be a service type and operation, with
optional fault name.

« Timestamp - when it occurred.
 Description - further details about the situation.

» Action - show properties for the situation.

20

Situations

At the bottom left is a collapsed region containing controls for performing bulk actions.

Actions
apply to rows
3 ® »
Figure 3.7.

These actions can operate either on the filtered situations (as shown here), or all situations. The
actions themselves, from left to right, are retry (i.e. resubmit an associated message to the target
service), export and remove.

When a new Situation occurs, if the user is already viewing the situations page, then a small
notification will be displayed in the top right corner:

A (2)

Displaying 1-0 of 0 -

Figure 3.8.

If this notification is expanded, it will list some of the details for the new Situations:

21

Chapter 3. Visualising the Ru...

A (2)

A SLA Violation 10:204M

jurn:switchyard-guickstart-
demo:orders:0. L0}OrderService/lnvertoryService|lookuplkem

Ak SLA Violation 10:20AM

jurr:switchyard-guickstar-
demo:orders:0. L0}OrderServicelsubmitOrder

Figure 3.9.

The user can either select one of the entries to navigate to it's details, or alternatively use the
refresh button to update the list.

To view the details associated with a Situation in the list, select its type field, which will navigate
to the details page:

22

Situations

Overlord - Runtime Gover %

’\g" d ID localhost: 8020/ j-uif#situationDetails;id=285d29aa-e7ce-47b8-9faa-1e999d5ad7ca

* JBoss Overlord Runtim 2 admin ¥

Runtime Governance

Dashboard / Situations = / Situation Details

4\ SLA Violation
Details Call Trace Message

Situation Details

Subject: {urn:switchyard-quickstart-demoorders:0.1.0}OrderService|submitOrder
Status: UNRESOLVED

Timestamp 06/30/2014 AM 10:20AM

Description

OrderService exceeded maximum response time of 400 ms

Properties Context Data
ane e
total 2400 Conversation 3
node gbrown-redhat
host gbrown-redhat
gateway soap
item JAM
contentType {urn:switchyard-quickstart-demo:orders:1.0}submitOrder
customer Fred
Assign

© JBoss Overlord 2013-4

Figure 3.10.
This page shows the details of the situation, including properties and context data.

The Call Trace tab shows the call stack associated with the business transaction, if appropriate
context information has been recorded with the situation.

23

Chapter 3. Visualising the Ru...

Overlord - Runtime Gover %

= ocalhost:8080/rtgov-ui/#situationDetails;id=2 29aa-e7ce-47b8-9faa-1e999d5ad7ca
< 5 | [localhost:8080/rtg i Details;id=285d29 7ce-47b8-9faa-1e999d5ad7

* JBoss Overlord Run

Runtime Governance

Dashboard / Situations = / Situation Details

& SLA Vielation

Details Call Trace Message

HO submitOrder{urn:switchyard-quickstart-demo:orders:0.1 O}OrderSeNice] Selected Node

- lookupltem furn:switchyard-quickstart-
demo:orders:0.1.0}OrderService/InventoryService

Summary
[511ms] (92%) Toa
@ Warning: Going to take a bit of time ...] Component

@ Information: Found the item 'JAM']

Interface
art-
LogisticsService Operation
[Bms] (1%) Request Latency
Response Latency
Duration
Fercentage

@ Information: Delivering the goods]

Properties
client-host
server-node
server-host
client-node

© JBoss Overlord 2013-4

[551ms] (100%) lookupltem {{urn switchyard-quickstart-
demo:orders:0.1.0}OrderService/InventoryService}

Call

{urn:switchyard-quickstart-demo orders:0.1.0}0rderService/InventoryService

org.overlord.rtgov.quickstarts.demos.orders InventoryService
lookupltem

1ms

Oms

5llms

92ms

gbrown-redhat
ghrown-redhat
gbrown-redhat
ghrown-redhat

4 admin v

Figure 3.11.

Selecting a node in the call trace displays further details in the right hand panel.

The optional Message tab is displayed if the Situation has an associated business message.

24

Situations

[overtord - Runtime Gover x

\g-» d l [localhost: &t v-ui/#situationDetails;id=d47e6dd8-c092-4160-94 2d-dc4 S5cfacaB06

* JBoss Overlord Runtin nce 2 admin ¥

Runtime Governance

Dashboard / Situations = / Situation Details

4 Exception
Details Call Trace Message

Message Details

[+]

1 =?xml version="1.0" encoding="UTF-8"?=><orders:submitOrder xmlns:orders="urn:switchyard-quickstart-demo:orders:1.0">
2 <order=

g <orderId=S</orderId=

4 <itemId=BUTTER=/itemId=>

5] <quantity=100</quantity=

6 <customerx>Alice</customerx>

7 </order=

8 </orders:submitOrder=>

[

Resubmit

© JBoss Overlord 2013-4

Figure 3.12.

If the service and operation, associated with the situation, supports resubmission of the messages
(i.e. if a SwitchYard service, then it would need to have an SCA binding and the operation would
need to be one-way), then the user will be able to edit the message content and press the Resubmit
button. This will result in resubmission information being displayed:

Fesubmit

Fesubmitted by 'admin’ at 'Monday, 2014 June 30 10:26:32 UTC+1": "Success'

Figure 3.13.

25

Chapter 3. Visualising the Ru...

3.3.1. Situation Lifecycle

The following diagram shows the lifecycle of a Situation. Transitions are controlled by appropriate
buttons presented when viewing the situation details.

Assign

Start Progress

UNRESOLVED IN_PROGRESS

Start
Progress

REOPENED

Progress

Reopen

WAITING RESOLVED

CLOSED

Figure 3.14.

3.4. Analytics
RTGov uses Elasticsearch [http://www.elasticsearch.org/] to store the activity information, and

Kibana [http://www.elasticsearch.org/overview/kibana/] to provide a dashboard for analysing that
information.

3.4.1. Dashboard

The "out of the box" dashboard layout presents the following information:

26

http://www.elasticsearch.org/
http://www.elasticsearch.org/
http://www.elasticsearch.org/overview/kibana/
http://www.elasticsearch.org/overview/kibana/

Dashboard

J Overtord - Runtime Gover x [[Kibana 3 - Overlord RTG . x

G I\j localhost: 8080/rtgov-ui/analytics. html#/dashboard/file/default.json
aA Overlord RTGov Analytics
QUERY « FILTERING « ¥

RESPONSE TIMES e & 3+ x
View » | @ Zoom Out| @ All(53) max mean perls | (53 hits) 3
400
350 ®
300
250
200 |
150
100

50

0 8 oo
10:27:.00 10:28:00 10:29:00 10:30:00 10:31:.00 10:32:00 10:33:00 10:34:00 10:35:00 10:36:00

LIST OF SERVICES o & 4 x FAULTS e & 4+ x

Term Count Action @ error (10) itemnotfound (2) Missing field (41)
{urn:switchyard-quickstart-demo:orders:0.1 0}QrderService 29 Qe

{urn:switchyard-quickstart-demo:orders:0.1.0}OrderService/InventorySenice 13 Qe

{urn:switchyard-guickstart-demo:orders:0.1 0}QrderSenvice/LogisticsSemvice 11 Qe
SERVICE DISTRIBUTION OVER TIME o o 4 x OPERATIONS e & 4 x

v | & Zoom Out| @ All(53) countperlm | (53 hits) @ submitorder (23) lookupitem (13) deliver (11) @ makepayment (8)

20 -

Figure 3.15.

27

Chapter 3. Visualising the Ru...

|4 Overtord - Runtime Gover x

Kibana 3 - Overlord RTG: %

<§““ '& [D localhost:8080/rtgov-ui/analytics.htmliF/dashboard/file/default.json ﬁ] @ =
‘ — | [
DISTRIBUTION OVER TIME e & 4 x OPERATIONS e # + x

View » | @ Zoom Out| @ All(60) countperlm | (G0 hits)

@ submitorder (26)

lookupitern (15)

deliver (13) @ makepayment (&)

20
15
submitorder
0 43%
5
, HH - B 1 I I | I |
10:20 10:22 10:24 10:26 10:28 10:30 10:32 10:34 10:36
06-30 06-30 06-30 06-30 06-30 06-30 06-30 06-30 06-30
DOCUMENTS e o $ x
0 to 60 of 60 available for paging
Fields @ » 4 serviceType ¢ 4 operation » 4 fault » 4 imestamp v
All27)/ Current (25) {urn:switchyard-quickstart-demo:orders:0.1.0}0rderService/n... lookupltem 1404120973584
{urn:switchyard-quickstart-demo:orders:0.1.0}OrderService/Lo.. deliver 1404120973584
O id {urn:switchyard-quickstart-demo:orders:0.1.0}0rderService submitQrder 1404120973584
O _index {urn:switchyard-quickstart-demo:orders:0.1.0}0rderService/In... lookupltem 1404120956514
O e {urn:switchyard-quickstart-demo:orders.0.1.0}0rderService/Lo.. deliver 1404120956514
O average
O context {urn:switchyard-quickstart-demo:orders.0.1.0}0rderService submitQrder 1404120956514
= {urn:switchyard-quickstart-demo:orders.0.1.0}0rderService/In... lookupltem 1404120943385
O interface
O max {urn:switchyard-quickstart-demo:orders:0.1.0}0rderService/Lo.. deliver 1404120943385
O min {urn:switchyard-quickstart-demo:orders:0.1.0}0rderSemice submitOrder 1404120943385
c4
O properties amount {umn:switchyard-guickstart-demo:orders:0.1.0}0rderServicelIn... lookupltern 1404120930424
O properties.contentType {urn:switchyard- quickstart-demo:orders:0.1.0}0rderSemiceiLo.. deliver 1404120930424
O properties.customer
1] . {urn:switchyard-quickstart-demo:orders:0.1.0}0rderSemice submitOrder 1404120930424
properties.gateway
O properties host {urn:switchyard-quickstart-demo:orders:0.1.0}0rderSemice submitOrder ERRCOR 1404120891550
O properties.item
) {urn:switchyard-quickstart-demo:orders:0.1.0}0rderSemice submitOrder ERROR 1404120891550
O properties.itemid
O properties node {urn:switchyard-quickstart-demo:orders:0.1.0}OrderService submitOrder ERROR 1404120891550 [+1

Figure 3.16.

3.4.1.1. Response Times

This graph displays response time information that matches any defined filter. Initially the only filter
that is applied is a default time frame showing information over the last 24 hours (see following
section on Changing the Time Frame and Refresh Cycle).

All response time information will be shown in the same (green) colour. This enables a general
indication of performance to be obtained, but to identify specific issues it will be necessary to
isolate response times of interest. This can be achieved using "Filtering by query" to only show
response times within a particular range.

It is also possible to colour code response time information associated with particular subsets of
the information (e.g. for particular service types, or customers, etc). See Segmenting information
by query section for more information.

28

Dashboard

3.4.1.2. List of Services

This table shows the list of services. Each service is listed with the number of invocations (count)
and actions that can be used to focus or exclude the particular service from the information being
viewed.

@ Note
The service invocation count is based on the information available after all filters
have been applied. This means it is possible to identify how many invocations of
a particular service have been performed by setting the timeframe (see Changing
the Time Frame and Refresh Cycle) or filters on other properties (e.g. customer,
host, etc).

By default, the services listed in the table are related to public services. However if a service is
marked as internal, then they will be excluded using the following filter:

querystring musthof

query : internal: "true"

RESPONSE TIMES
Wiewe | 5 Toaam Mot | LI {EY maav maan na

Figure 3.17.

To include the internal services in the service table, simply disable this filter by unchecking the
filter.

3.4.1.3. Faults

This pie chart shows the distribution of faults that occur within the filtered response time information
being viewed.

The segment labels mean:

» "Missing field" refers to response time information that had no associated fault

29

Chapter 3. Visualising the Ru...

« "Error" is a general segment to identify response times associated with unnamed exceptions
« All other values are domain specific fault types (e.g. itemnotfound in this case).

Selecting a region from the pie chart will further focus the dashboard on response time information
associated with that catagory of fault. To cancel the filter, select the "FILTERING" green tab at
the top of the page, and either disable or remove the entry matching the fault filter.

3.4.1.4. Distribution over time

This bar charts shows the distribution of the response time information over time, grouped by a
specified time interval (initially 1 minute).

When subsets of information are defined, based on pinned queries, it is possible to get more
interesting results based on colour coded regions. For example, if separate queries are used
to represent response times associated with different service types, then the bars will be colour
coded to show how much activity occurred on each of the service types.

3.4.1.5. Operations

This pie chart is used to decompose the activities based on the operations that were performed,
subject to any other filters that may have been applied.

It is also possible to create an additional filter on the currently viewed information, based on a
particular operation, by selecting the operation of interest’'s segment within the pie chart. To cancel
the filter, simply select the "FILTERING" green tab at the top of the page, and either disable or
remove the entry matching the operation filter.

3.4.1.6. Documents

This section provides a list of the most recent response time information. The columns provide
a small selection of fields from the response time events, with a list of the available fields as
checkboxes down the left hand side. This enables the user to select additional fields of interest.

When a row is selected, it will expand to show the complete set of fields from the response time
event, with some action icons next to each value. If the user selects the magnifying glass, then
the dashboard will be additional focused on response time information associated with that field
value, and similarly selecting the no entry sign will exclude information with that field value.

As mentioned previously, cancelling a particular filter can be achieved by selecting the
"FILTERING" green tab at the top of the page, and either disable or remove the entry matching
the field filter.

3.4.2. Changing the Time Frame and Refresh Cycle

The Kibana dashboard provides a mechanism for users to define the timeframe of interest, and
the refresh interval.

30

Filtering by selection

a day ago to a few seconds a d every 10

2014-05-29 103
to
2014-06-30 10:3

Figure 3.18.

The drop down menu at the top of the dashboard enables the user to select from a default set of
time ranges in the past to the current time. If one of the default time ranges is not suitable, then
a custom value can be selected.

Similarly, the refresh cycle can be selected from the values in the Auto-Refresh sub-menu, or
alternatively disabled by selecting Off.

However it is also possible to interactively select a region from the response time graph (at the top
of the page), to focus the attention of the dashboard on that time period. This creates a time based
filter, which can be cancelled by selecting the "FILTERING" green tab at the top of the page, and
either disable or remove the entry matching the time filter.

3.4.3. Filtering by selection

The Kibana dashboard enables a user to filter the information being viewed by:

 pressing the magnifying glass symbol associated with some information of interest (see action
in the image below)

31

Chapter 3. Visualising the Ru...

LIST OF SERVICES e o <+ x
Term Count Action
{urn:switchyard-quickstart-demo:orders:0.1.010rderSernvice 32 Qe
furn:switchyard-quickstart-demo:orders:0.1.0}0rderSenice/InventorySenvice 15 Qe
furn:switchyard-quickstart-demo orders:0.1.0}0rderSenice/LogisticsSenice 13 Qe

Figure 3.19.

 pressing the no entry sign symbol associated with the information to be excluded (see action
in the image above)

 selecting the information of interest from a pie chart (e.g. selecting a fault, as shown in the

image below)

Jil overtord - Runtime Gover /' [Kibana 3 - Overlord R x Y8
(& l [3 localhost:8080/rtgov-ifanalytics.htmlit/dashboard/file/default.json
=R Overlord RTGov Analytics Jun 30, 2014 10:2 c # & B e
QUERY « FILTERING «

RESPONSE TIMES e & 3+ x

View » | @ Zoom Out| @ Al (12) max mean perls | (12 hits)

600

500 []

400 1

300

200

100

0 29—
10:27.00 10:28:00 10:29:00 10:30:00 10:31.00 10:32:00 10:33:00 10:34:00 10:35:00 10:36:00

LIST OF SERVICES o & 4 x FAULTS e & 4 =

Term Count Action ® itemnotfound (2) Missing field (10)

{urn:switchyard-quickstart-demo:orders:0.1 0}QrderSernvice/nventorySenice 12 Qo

SERVICE DISTRIBUTION OVER TIME e o + = OPERATIONS e o 4 x

View» | @ Zoom Out| @ All(12) countperlm | (12 hits) ® lookupitem (12)

- N G
-

Figure 3.20.

32

Filtering by selection

As well as being able to focus/exclude information based on the other graphs, the Documents
table provides even more fine grained control over what is displayed. In the following image it
shows how the f aul t value of itemnotfound could be used as a filter, instead of selecting it from
the pie chart. However, more importantly adhoc fields such as customer or productName could
be equally used as the subject of the filter, if that information is recorded with the activity events
(and therefore the response time data).

Overlord - Runtime Gover | [Kibana 3 - Overlord RTG . x

Ea ‘_j I:, localhost:8080/rtgov-ui/analytics. html#/dashboard/file/default.json F:] @ =
I CONTERT LT S VUL Ty O TG oS el U 1110, UTHETS.0. LU T oS e TOURG e TFUFLZ0007 [oF —
o (=]
5 {urn:switchyard-quickstart-demo:orders:0.1 0}0OrderService/In lookupltem 1404120780743
O interface
O max {urn:switchyard-quickstart-demo:orders:0.1.0}OrderServicefIn... lookupltem 1404120765948
O min {urn:switchyard-quickstart-demo:orders:0.1.0}0rderSenviceiln lookupltem 1404120743705

{urn:switchyard-quickstart-demo:orders:0.1 0}OrderServicefIn lookupltem 1404120685099
0 {urn:switchyard-quickstart-demo:orders:0.1.0}OrderService/In... lookupltem ItemMotFound 1404120651333
O requestid.unitid . Table 1 15011 2 ~
O requestid.unitindex view: Table SO Fraw
[} eld unitld Field Action Value
O responseld.unitindex id a5d12708-662d- 4888-08d0-def502d3e1dd
=
= _index rtgov
_type responsetime
average 3
context {"value""|D-ghrown-redhat-51656-1404119601960-0-45" "type"."Message"}, {"value""ID-ghrown-redhat-51656-1404119601960-0-
P, type""Message"}
fault ItemMatFound
interface org.overlord.rigov.quickstarts.demos.orders InventoryService
max 3
min 3
operation lookupltemn
properties host gbrown-redhat
properties.node gbrown-redhat
requestid.unitld b39a586a-c244-41a1-998e-2301401e5a45
requestid unitindex 2
responseld.unitid b39a586a-c244-41al-998e-e301401e5a45
responseld.unitindex 4
semniceType {urn:switchyard-quickstart-demo:orders:0.1.0}OrderService/lnventoryService 3
timestamp 1404120651333
0 to 11 of 11 available for paging

Figure 3.21.

As each filter is added, to progressively refine the results being viewed, their details are listed in
the "FILTERING" section at the top of the dashboard, as shown in the following image:

~afl Overlord RTGov Analytics

QUERY « FILTERING »

np

from : now-15m

LG

Figure 3.22.

mnotfound

33

Chapter 3. Visualising the Ru...

The first box identifies the initial time range used to display the data, which has been refined by
the next box based on interactively selecting a region on the response time graph. The third box
applies a filter to only show information related to the InventoryService service type, and finally
the fourth box narrows the information further to show the subset of response time information
associated with the itemnotfound fault.

Any of the these filter criteria can individually be disabled (using the tick symbol) or cancelled
(using the cross symbol).

3.4.4. Segmenting information by query

Although filtering provides a useful way to narrow in on information of interest to view that data
in the available graphs. It is sometimes more interesting to be able to compare different sets of
results.

In the default dashboard all response time information is treated in the same way, and therefore
not differentiated. If we want to segment the information based on various groupings, then we
need to create what are called pinned queries. At the top of the dashboard, you will need to expand
the blue "QUERY" region to find a data entry area. This can be used to enter adhoc queries to
filter the results displayed in the dashboard (see following section).

However for the purpose of comparing different sets of data, we leave the default entry blank and
instead create one or more additional query fields, but pressing the plus symbol present in the
last entry field.

When an entry field has been created, enter an appropriate query. For example,

* serviceType: "{urn:sw tchyard-qui ckstart-denp-orders: 0. 1. 0} Order Servi ce/
I nvent oryServi ce"

This query will identify response times associated with the InventoryService service type.

e properties.custoner: "Fred"

If the customer name has been associated with the reported activity events, then this query will
identify the response time information associated with a particular customer.

As shown in the following image, the colour coded segmented queries are reflected in the
response time graph:

34

Segmenting information by query

[l Overlord - Runtime Gover 3 [ff Kibana 3 - Overlord RTG: x

L] localhost:8080/rtgov-ui/analytics. html$#/dashboard/file/default.json

~all Overlord RTGov Analytics

QUERY »

— service Type: "{urn:switchyard-quickstz service Type: "{urn:switchyard-quickstz service Type: "{urn:switchyard-quickst:

@ properties customer: "Fred” @ properties.customer: "Joe" Q+

from : now-1h
0 now

RESPONSE TIMES e o + x
v | @ Zoom Out| InventorySemvice (6) LogisticsSenvice (4) OrderSemvice (13) @ Fred (13) @ Joe (4) max mean perls | (40 hits)
70
- L]
60
50
40
30
20
10
0
10:29:00 10:29:30 10:30:00 10:30:30 10:31:00 10:31:30 10:32:00 10:32:30 10:33:00
I LIST OF SERVICES o o $ x FAULTS o o $ x
Term count Action itemnotfound (2) errar (1) Missing field (20}
{urn:switchyard-quickstart-demo orders:0.1 0}Qrder: 13 Q@
{urn:switchyard-quickstart-demo orders:0.1 0}Order! 6 Qo
{um:switchyard-quickstart-demo orders:0.1.0}CrderSenice/LogisticsSenvice 4 Qo
[~

Figure 3.23.

as well as the Distribution over time chart:

35

Chapter 3. Visualising the Ru...

DISTRIBUTION OVER TIME 6 & 4 x
View ¥ | @ Zoom Out | InventorySenvice (15) LogisticsSernvice (13) OrderService (32) @ Fred (38) @ Joe (4)
count per Lm | (102 hits)
a0
25
20
15
10 I . I
5]
- - o . =
0
1o:ls 10:20 10:22 10:24 10:26 10:28 10:30 10:32 10:24 10:36
0/-30 06-30 06-30 06-30 06-30 06-30 06-30 06-30 06-30 06-30
Figure 3.24.

To change the label associated with a query, select the query coloured dot and enter the label in
the field, followed by pressing the close button:

service Type: "{urn:switchyard-r Q 4

lucene ¥ | Ahoutthe lucene query

Legendvalue

wvice (15) max mean perls | (75 hits)

Figure 3.25.

It is also possible to temporarily disable a particular query, or change its colour, using this popup
dialog.

3.4.5. Adhoc queries

Some times we need to focus the information on a particular property value or range. For
example, if wanting to identify the services involved in increased response times, to locate potential

36

Customizing and sharing the Dashboard

performance issues, then enter the query "max:>100" to show all response times that are greater
than 100 milliseconds:

E Overlord - Runtime Gover x| E Kibana 3 - Overlord RTG: x| Query String Query x®
&) [_’ localhost: 8080/rtgov-uifanalytics. html#/dashboard/file/default json
~al Overlord RTGov Analytics Jun 30, 2014 10°18:00 to Jun 30, 2014 10-3¢
QUERY »
masx:=100]

RESPONSE TIMES e o 4 x
View » | @ Zoom Qut | All (4) max mean per Lm | (4 hits) =
600

500

400

300

200

100

0
1020 10:22 10:24 10:28 10:28 10:30 10032 10:34 10:36
06-30 06-30 06-30 06-30 06-30 06-30 06-30 06-30 06-30
I LIST OF SERVICES e & + x FAULTS e # $+ x

Term Count Action Missing field (4)

{urn:switchyard-quickstart-demo:orders:0.1.0}0rderService 2 Qe

{urn:switchyard-quickstart-demo orders:0.1.0}0rderService/InventoryService 2 Qe

I [~

Figure 3.26.

Notice that the List of Services table now only includes the list of services that are related to those
higher response times. The same applies to the Operations pie chart lower in the page. This can
be used to pin point the services and operations that are causing the performance problems - and
also by examining the Documents it is possible to identify other useful information, such as which
customer was affected (if that information has been recorded with the activity events).

3.4.6. Customizing and sharing the Dashboard

It is possible to customise the dashboard, adding/removing rows and widgets within rows,
configuring the graphs/charts/tables, etc.

Once a custom dashboard has been defined, then it can be saved using the disc symbol at the
top right of the dashboard:

37

Chapter 3. Visualising the Ru...

Figure 3.27.

When relaunching the RTGov Ul, it is the possible to load a custom dashboard using:

® My Custom Dashboard &

Figure 3.28.

It is also possible to export a custom dasbboard to a file, enabling it to be distributed to other
interested users, who can then import it into their user account. Select the save icon, select
Advanced and then Export Schema.

38

Chapter 4.

Chapter 4. Reporting Activity
Information

There are two ways in which activity information can be collected for further processing by the
Runtime Governance server.

1. Integrating an activity collector into the execution environment. This will intercept activities and
automatically report them to the Runtime Governance server.

2. Manually report the activity information to the Runtime Governance server through a publicly
available API (e.g. REST service)

This section will explain how to use both approaches.

4.1. Integrated Activity Collector

This section will discuss how an integrated activity collector can be used to automatically collect,
pre-process and optionally validate activity events before finally reporting them to the server.

4.1.1. Supported Environments
This section discusses the environments that currently support integrated activity collectors.
4.1.1.1. SwitchYard

To collect activity events from a SwitchYard environment, simply install either the full server (if
the execution and governance server are running co-located) or the client installation profile (if
reporting events to another server).

4.1.1.2. OSGi Application

To collect activity events from an OSGi application, a proxy can be used to intercept inbound and
outbound invocations on a service, and report the activity to an embedded activity collector within
the OSGi container. These proxies can be wired into an OSGi application using blueprint, e.g.

<bl ueprint xm ns="http://ww. osgi.org/xm ns/bl ueprint/vi.0.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. osgi . org/ xm ns/ bl ueprint/v1.0.0
http://ww. osgi . org/ xm ns/ bl ueprint/vl.0.0/bl ueprint.xsd">

<service
interface="org.overlord. rtgov. qui ckstarts. denps. order mgnt . or der servi ce. Or der Ser vi ce"
ref =" or der Ser vi ceProxy" />

<bean i d="or der Servi ceProxy"
cl ass="org.overlord.rtgov.client.ActivityProxyHel per"

39

Chapter 4. Reporting Activity...

fact ory- net hod="cr eat eServi ceProxy" >
<ar gument
val ue="org. overlord. rtgov. qui ckstarts. denos. order ngnt . or der servi ce. O der Servi ce" /
>
<ar gunent ref="order Servi ceBean" />
</ bean>

<bean i d="or der Servi ceBean"
cl ass="org. overl ord. rtgov. qui ckstarts. denos. order ngnt . or der servi ce. Or der Ser vi ceBean"
>
<property name="inventoryService" ref="inventoryServiceProxy"/>
<property name="| ogi sticsService" ref="1|o0gisticsServiceProxy"/>
</ bean>

<bean i d="i nvent oryServi ceProxy"
cl ass="org.overlord.rtgov.client.ActivityProxyHel per
fact ory-nmet hod="creat ed i ent Proxy" >
<ar gument
val ue="org. overl ord. rtgov. qui ckstarts. denps. orderngnt . i nvent oryservi ce. | nvent oryServi ce" /
>

<ar gunent ref="order Servi ceBean" />
<argunent ref="inventoryServiceBean" />
</ bean>

<bean i d="1 ogi sti csServi ceProxy"

cl ass="org.overlord.rtgov.client.ActivityProxyHel per"
factory-net hod="creat ed i ent Proxy" >

<ar gunent
val ue="org. over| ord. rtgov. qui ckstarts. denps. orderngnt . | ogi sti csservice. Logi sticsService" /
>

<ar gunent ref="order ServiceBean" />

<argunent ref="1ogisticsServiceBean" />

</ bean>

<reference id="inventoryServi ceBean"

interface="org.overlord. rtgov. qui ckstarts. denps. ordermgnt . i nvent oryservi ce. | nvent oryServi ce
</reference>

<reference id="1ogi sticsServi ceBean"

i nterface="org.overlord.rtgov. qui ckstarts. denps. orderngnt .| ogi sticsservice. Logi sticsService
</reference>

</ bl uepri nt >

The service interface is associated with a bean representing the service
proxy, created using the createServiceProxy static factory method on the class
org.overlord.rtgov.client.ActivityProxyHelper.

40

Information Processor

Similarly, the outbound relationships from the service to other OSGi components are
established via a client proxy, using the createClientProxy static factory method on the
org.overlord.rtgov.client.ActivityProxyHelper class.

4.1.2. Information Processor

To enable the Runtime Governance infrastructure, and the user policies/rules that are defined
within it, to make the most effective use of the activities that are reported, it is necessary to pre-
process certain events to extract relevant information for use in:

« correlating activity events to a particular business transaction instance
* highlighting important properties that may need to be used in business policies

Extracting the property information is important for various reasons:

« it enables the business policies to remain independent of the specific information format used,
and thus more efficiently access the key details (i.e. as properties)

* it is important to control what information is distributed within the actvity events, for both size
(i.e. performance) and security/privacy reasons.

By default, information content should not be distributed unless an information processor has
been defined to explicitly indicate how that information should be represented (if at all) within the
activity event.

This section explains how information processors can be configured and deployed along side the
business applications they are monitoring.

4.1.2.1. Defining the Information Processors

The Information Processor can be defined as an object model or specified as a JSON
representation for packaging in a suitable form, and subsequently de-serialized when deployed
to the governed execution environment.

The following is an example of the JSON representation of a list of Information Processors. This
particular example accompanies the Order Management sample:

[{
"name": " Or der Managenent | P,
"version":"1",
"typeProcessors": {
"{urn:sw tchyard-qui ckstart-deno: orders: 1. 0} submi t Order": {
"contexts":[{
"type": " Conversation",
"eval uator":{
"type":"xpath",
"expression":"order/orderld"
}
H,

41

Chapter 4. Reporting Activity...

"properties":[{
"name": "customer"”,
"eval uat or": {
"type":"xpath",
"expression": "order/custoner"
}
A
"nane":"itenl,
"eval uator": {
"type":"xpath",
"expression":"order/item d"
}
}H
iE
"{urn:sw tchyard-qui ckstart-deno: orders: 1. 0} subm t Or der Response": {
"contexts":[{
"type":"Conversation",
"eval uator": {
"type":"xpath",
"expression": "order Ack/ orderld"
}
H,

"properties":[{
"nanme":"custoner",
"eval uator": {
"type":"xpath",
"expression": "orderAck/ cust oner "
}
o
"pane":"total ",
"eval uat or": {
"type":"xpath",
"expression": "orderAck/total "
}
}H
iE
"java: org.swi tchyard. qui ckstarts. denps. orders. Order": {
"contexts":[{
"type":"Conversation",
"eval uat or": {
"type":"mel",
"expression":"orderld"
}
H
"properties":[{
"nane": "custoner",
"eval uat or": {
"type":"mel",
"expression":"custoner"

42

Information Processor

}

oA

"nane":"item d",

"eval uat or": {

"type":"mel"
"expression":"iten d"
}
}H
iE
"java: org.sw tchyard. qui ckstarts. denps. orders. Order Ack": {
"contexts":[{
"type":"Conversation",
"eval uator": {
"type":"nvel "
"expression":"orderld"
}
H
"properties":[{

"nanme":"custoner",

"eval uat or": {
"type":"nvel "
"expressi on":"custoner"

}

o

"name":"total "

"eval uator": {
"type":"mel ",
"expression":"total"

}

}H
},

"{urn:sw tchyard-qui ckstart-deno: orders: 1. 0} nakePaynent " : {
"properties":[{

"nane": "custoner",

"eval uat or": {

"type":"xpath",
"expressi on": " paynent/cust oner"
}
A

name": "anpunt ",
"eval uator": {
"type":"xpath",
"expressi on": " paynment/anount "
}
}H
b
"{urn:sw tchyard-qui ckstart-deno: orders: 1. 0} nakePaynent Response": {
"properties":[{
"nanme": "custoner",

43

Chapter 4. Reporting Activity...

"eval uator": {
"type":"xpath",
"expression":"receipt/custoner”
}
o
"pane": "anmount",
"eval uat or": {
"type":"xpath",
"expression":"receipt/anmunt"
}
}H
iE
"java: org.switchyard. qui ckstarts. denos. orders. Recei pt": {
"properties":[{
"nanme": "cust oner",
"eval uat or": {
"type":"nmvel ",
"expressi on":"custoner"
}
o
"nanme": "anmount ",
"eval uator": {
"type":"mel",
"expression":"anmount "

}
}H
H
"java:org.sw tchyard. qui ckstarts. denps. orders. | t emNot FoundExcepti on": {
"script":{
"type":"nmvel ",
"expression":"activity.fault = \"Itemot Found\""
}
}
}
}

This example illustrates the configuration of a single Information Processor with the top level
elements:

Field Description

name The name of the Information Processor.

version The version of the Information Processor.

If multiple versions of the same named
Information Processor are installed, only the
newest version will be used. Versions can be
expressed using three schemes:

44

Information Processor

Field Description

Numeric - i.e. simply define the version as a
number

Dot Format - i.e. 1.5.1.Final

Any alpha, numeric and symbols.

typeProcessors The map of type processors - one per type,
with the type name being the map key.

When comparing versions, for example when determining whether a newly deployed Information
Processor has a higher version than an existing one with the same name, then initially the versions
will be compared as numeric values. If either are not numeric, then they will be compared using
dot format, with each field being compared first as numeric values, and if not based on lexical
comparison. If both fields don't have a dot, then they will just be compared lexically.

Type Processor

The type processor element is associated with a particular information type (i.e. as its key). The
fields associated with this component are:

Field Description

contexts The list of context evaluators.
properties The list of property evaluators.
script An optional script evaluator that is used to do

any other processing that may be required,
such as setting additional properties in the
activity event that are not necessarily derived
from message content information.

transformer An optional transformer that determines how
this information type will be represented
within an activity event.

Context Evaluator

The fields associated with the Context Evaluator component are:

Field Description

type The context type, e.g. Conversation,
Endpoint, Message or Link. These types are
explained below.

timeframe The number of milliseconds associated with
a Link context type. If not specified, then
the context is assumed to represent the
destination of the link, so the source of the
link must define the timeframe.

45

Chapter 4. Reporting Activity...

Field Description

header The optional header name. If not defined,
then the expression will be applied to the
information content to obtain the context

value.

evaluator The expression evaluator used to derived the
context value. See further down for details.

The context types represent different ways in which the activity events can be related to each other
or to a logical grouping (e.g. business transaction). Not all activity events need to be associated
directly with a global business transaction id. They can be indirectly associated based on transitive
correlation - e.g. activity 1 is associated with the global business transaction id, activity 2 is
associated with activity 1 by a message context type, and activity 3 is associated with activity 2
based on an endpoint correlation id. All three activity events will be collectively correlated to the
business transaction id.

An explanation of the different context types is,

Context Type Explanation

Conversation A conversation identifier can be used to
correlate activity events to a business
transaction associated with a globally unique
identifer (e.g. an order id).

Endpoint A globally unique identifier associated with
one endpoint in a business transaction. For
example, a process instance id associated
with the business process executing within
a service playing a particular role in the
business transaction.

Message The globally unique identify of a message
being sent from one party to another.

Link A temporal link between a source and
destination activity. The temporal nature of
the association is intended to enable non-
globally unigue details to be used to correlate
activities, where the id is considered unique
within the defined timeframe.

Property Evaluator

The fields associated with the Property Evaluator component are:

Description

name The property hame being initialized.

46

Information Processor

Field Description

header The optional header name. If not defined,
then the expression will be applied to the
information content to obtain the property
value.

evaluator The expression evaluator used to derive the
property value. See further down for details.

Expression Evaluator

In the context and property evaluator components, they reference an expression evaluator that is
used to derive their value. The expression evaluator has the following fields:

Field Description

type The type of expression evaluator to use.
Currently only support mvel or xpath.

expression The expression to evaluate.

optional Optional field that indicates whether the value
being extracted by the expression is optional.
The default is false. If a value is not optional,
but the expression fails to locate a value, then
an error will be reported

These expressions operate on the information being processed, to return a string value to be
applied to the appropriate context or property.

Script

The script field of the Type Processor has the following fields:

Field Description

type The type of script evaluator to use. Currently
only support mvel.

expression The expression to evaluate.

The MVEL script evaluator is supplied two variables for its use:

« information - The information being processed
* activity - The activity event

An example of how this script can be used is shown in the example above, associated with the
IltemNotFoundException. In this case, the message on the wire does not carry the fault name, so
the information processor is used to set the fault field on the activity event.

47

Chapter 4. Reporting Activity...

Transformer

The transformer field of the Type Processor has the following fields:

Field Description

type The type of transformer to use. Currently
support serialize and mvel.

The serialize transformer can take one optional additional boolean field includeHeaders (with
default value false). This transformer simply attempts to convert the representation of the
information into a textual form for inclusion in the activity event. So this transformer type can be
used where the complete information content is required. If the optional includeHeaders field is
specified as true, then any header values that accompany the message that are represented as
either String or DOM, will be serialized in an internal property, which can then be used by tooling
(e.g. the resubmission capability in the RTGov Ul).

The mvel transformer takes the following additional fields:

The MVEL transformer script is supplied the following variable for its use:

Description

expression The mvel expression to transform the
supplied information.

The MVEL transformer is supplied the following variable for its use:

« information - The information being processed

For example, to include the content of the submitOrder message:

"typeProcessors": {
"{urn:sw tchyard- qui ckstart-deno: orders: 1. 0} submi t Order": {

"transformer": {
"type":"serialize"

}
h

4.1.2.2. Registering the Information Processors

JEE Container

The Information Processors are deployed within the JEE container as a WAR file with the following
structure:

warfil e

48

Information Processor

I

| - META- | NF

| | - beans. xm

I

| - VEB- | NF

| | -cl asses

| [| -ip.json

| | | - <cust om cl asses/resour ces>
I I

| [-Tib

| | -ip-1oader-jee.jar

| | -<additional |ibraries>

The i p. j son file contains the JSON representation of the Information Processor configuration.

The i p- 1 oader -j ee. j ar acts as a bootstrapper to load and register the Information Processors.

If custom classes are defined, then the associated classes and resources can be defined in the

VEB- | NF/ cl asses folder or within additional libraries located in the WEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld> ...</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<name>. ... </ name>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>

<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenent </ gr oupl d>
<artifactld>activity</artifactld>
<ver si on>${rt gov. versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenent </ gr oupl d>
<artifactld>i p-1oader-jee</artifactld>
<versi on>${rtgov. versi on} </ ver si on>

</ dependency>

49

Chapter 4. Reporting Activity...

</ dependenci es>
</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<final Name>. ... </fi nal Name>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<fai | OnM ssi ngWebXm >f al se</fai | OnM ssi ng\WebXni >
<ar chi ve>
<mani fest Entri es>
<Dependenci es>depl oynent . over| ord-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

OSGi Container

The Information Processors are deployed within the OSGi container as a JAR file with the following
structure:

jarfile

- META- | NF
| - MANI FEST. MF

-ip.json

-i p-1oader-osgi.jar
-<custom cl asses/ resour ces>
-<additional |ibraries>

I
|
I
I
I
|
I
I
The i p. j son file contains the JSON representation of the Information Processor configuration.

Thei p- 1 oader - osgi . j ar acts as a bootstrapper to load and register the Information Processors.

If custom classes are defined, then any associated classes, resources and additional libraries are
located in the top level folder.

50

Information Processor

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld>....</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<nane>. ... </ nanme>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>

<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenent </ gr oupl d>
<artifactld>activity</artifactld>
<versi on>${rtgov. versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>org. over| ord. rtgov. acti vi t y- managenent </ gr oupl d>
<artifactld>i p-1oader-osgi</artifactld>
<ver si on>${rt gov. versi on} </ ver si on>

</ dependency>

</ dependenci es>

<bui | d>
<final Name>. . .. </ fi nal Name>
<resour ces>
<resour ce>
<di rect ory>src/ mai n/ r esour ces</ di rect ory>
<filtering>true</filtering>
</resource>
</ resources>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. f el i x</ gr oupl d>
<artifactld>maven-bundl e-pl ugi n</artifactld>
<ext ensi ons>t r ue</ ext ensi ons>
<confi guration>
<instructions>
<Bundl e- Synbol i cName>${ proj ect . arti fact | d} </ Bundl e- Synbol i cNane>
<Bundl e- Ver si on>${ pr oj ect . ver si on} </ Bundl e- Ver si on>

51

Chapter 4. Reporting Activity...

<Bundl e-
Acti vator>org. overlord.rtgov.activity.processor. | oader.osgi.|PActivator</
Bundl e- Acti vat or >
<l nport - Package>
l'javax.inject.*,!javax. enterprise.*,!javax. persistence.*

O

*

</ | nport - Package>

<Enbed- Dependency>*; scope=conpi | e| runt i me</ Enbed- Dependency>
</instructions>
</ confi guration>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

</ pr oj ect >

4.1.3. Activity Validation

The Activity Validator mechanism provides the means to install event processing capabilities within
the activity collection environment (i.e. co-located with the execution of the business transaction).

The main reason for performing analysis of the activity events at this stage in the runtime
governance lifecycle is to enable the analysis to potential block the business transaction. For an
example of such a case, please see the synchronous policy sample.

In some execution environments these validators can be implicitly called as part of collecting the
activity events. However in some environments these validators need to be explicitly invoked,
as they impact the execution behaviour. The SwitchYard environment is an example of this
later environment, where an interceptor needs to be explicitly included within the SwitchYard
application, which is responsible for invoking the validation capability and reacting to any issues it
detects. To see how to configure such an interceptor, please see the synchronous policy sample.

4.1.3.1. Defining the Activity Validators

The Activity Validator can be defined as an object model or specified as a JSON representation
for packaging in a suitable form, and subsequently de-serialized when deployed to the governed
execution environment.

The following is an example of the JSON representation of a list of Activity Validators. This
particular example is from the synchronous policy sample:

[{
"name" : "RestrictUsage",
“version" : "1",
"predicate" : {
"@lass" : "org.overlord.rtgov.ep. nvel . M\ELPr edi cat e",
"expression” : "event instanceof

org.overlord.rtgov. activity. nodel . soa. Request Recei ved && event. servi ceType
== \"{urn:sw tchyard-qui ckstart-deno: orders: 0. 1. 0} Order Service\""

52

Activity Validation

b
"event Processor" : {
"@lass" : "org.overlord.rtgov. ep.nvel . WELEvent Processor",
"script" : "VerifylLastUsage. nmvel ",
"services" : {
"CacheManager" : {
"@l ass"
"org.overlord. rtgov. common. i nfini span. servi ce. | nfi ni spanCacheManager"
}
}
}

}

This example illustrates the configuration of a single Activity Validator with the top level elements:

Field Description

name The name of the Activity Validator.

version The version of the Activity Validator. If
multiple versions of the same named Activity
Validator are installed, only the newest
version will be used. Versions can be
expressed using three schemes:

Numeric - i.e. simply define the version as a
number

Dot Format - i.e. 1.5.1.Final

Any alpha, numeric and symbols.

predicate The optional implementation of the
org.overlord. rtgov. ep. Predi cate
interface, used to determine if the activity
event is relevant and therefore should be
supplied to the event processor

eventProcessor The implementation of the

org.overlord. rtgov. ep. Event Processor
interface, that is used to analyse the activity
event

When comparing versions, for example when determining whether a newly deployed Activity
Validator has a higher version than an existing one with the same name, then initially the versions
will be compared as numeric values. If either are not numeric, then they will be compared using
dot format, with each field being compared first as numeric values, and if not based on lexical
comparison. If both fields don’t have a dot, then they will just be compared lexically.

53

Chapter 4. Reporting Activity...

4.1.3.2. Registering the Activity Validators

JEE Container

The Activity Validators are deployed within the JEE container as a WAR file with the following
structure:

| -cl asses

[| -av.json

[| - <cust om cl asses/resour ces>
|

I

-lib
| -av-1 oader-jee.jar
| -<addi tional |ibraries>

The av. j son file contains the JSON representation of the Activity Validator configuration.

The av- | oader - j ee. j ar acts as a bootstrapper to load and register the Activity Validators.

If custom classes are defined, then the associated classes and resources can be defined in the
WEB- | NF/ cl asses folder or within additional libraries located in the WEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld>....</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<npame>. ... </ name>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>

<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenent </ gr oupl d>
<artifactld>activity</artifactld>
<versi on>${rt gov. versi on} </ versi on>

54

Activity Validation

<scope>pr ovi ded</ scope>

</ dependency>

<dependency>

<groupl d>or g. overl ord. rt gov. acti vi t y- managenment </ gr oupl d>
<artifactld>av-|oader-jee</artifactld>

<ver si on>${rtgov. versi on} </ ver si on>

</ dependency>

</ dependenci es>
</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<final Name>. . .. </ fi nal Name>
<pl ugi ns>
<pl ugi n>
<artifact!| d>naven-war - pl ugi n</artifactl d>
<confi gurati on>
<fai | OnM ssi ng\WebXm >f al se</fai | OnM ssi ng\WebXnl >
<ar chi ve>
<mani fest Entri es>
<Dependenci es>depl oynent . over| ord-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

OSGi Container

The Activity Validators are deployed within the OSGi container as a JAR file with the following
structure:

jarfile

META- | NF
| - MANI FEST. MF

-av.json
-av- | oader-osqgi.jar
-<custom cl asses/resour ces>
-<additional |ibraries>

55

Chapter 4. Reporting Activity...

The av. j son file contains the JSON representation of the Activity Validator configuration.

The av- | oader - osgi . j ar acts as a bootstrapper to load and register the Activity Validators.

If custom classes are defined, then any associated classes, resources and additional libraries can
be located in the top level folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>....</groupld>
<artifactld>....</artifactld>
<version>....</version>
<packagi ng>war </ packagi ng>
<name>. ... </ nanme>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>

<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenent </ gr oupl d>
<artifactld>activity</artifactld>
<versi on>${rtgov. versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<groupl d>or g. overl ord. rt gov. acti vi t y- management </ gr oupl d>
<artifactld>av-| oader-osgi</artifactld>
<ver si on>${rt gov. versi on} </ ver si on>

</ dependency>

</ dependenci es>

<bui | d>
<final Name>. ... </fi nal Name>
<r esour ces>
<resour ce>
<di rect ory>src/ mai n/ r esour ces</ di rect ory>
<filtering>true</filtering>
</ resour ce>
</ resour ces>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. f el i x</ gr oupl d>

56

Reporting and Querying Activity Events via REST

<artifactld>maven-bundl e-pl ugi n</artifactld>
<ext ensi ons>t r ue</ ext ensi ons>
<confi gurati on>
<i nstructions>
<Bundl e- Synbol i cNane>${ proj ect . arti fact | d} </ Bundl e- Synbol i cNane>
<Bundl e- Ver si on>${ pr oj ect . ver si on} </ Bundl| e- Ver si on>
<Bundl e-
Acti vator>org. overlord.rtgov.activity.validator.|oader.osgi.AVActi vator</
Bundl e- Act i vat or >
<| nport - Package>
l'javax.inject.*, !javax. enterprise.*,!javax. persistence.*

*

</ | nport - Package>
<Enbed- Dependency>*; scope=conpi | e| runt i me</ Embed- Dependency>
</instructions>
</ confi guration>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

</ pr oj ect >

4.2. Reporting and Querying Activity Events via REST

This section explains how activity information can be reported to, and queried from, the Activity
Server via a RESTful service.

4.2.1. Reporting Activity Information

POST request to URL: <host >/ overl ord-rtgov/activity/store
The service uses basic authentication, with the default username adni n and password over | or d.

The request contains the list of ActivityUnit objects encoded in JSON. (See
org.overlord.rtgov.activity.nodel . ActivityUnit class within the APl documentation, as
the root component of this configuration). For example,

[{
"id":"Testldl",

"activityTypes":[{
"type": " Request Sent ",
"context":[{

"val ue": "12345"
A

"val ue": "abc123",

"type": " Endpoint"
A

"val ue": " ABC123",

57

Chapter 4. Reporting Activity...

"type":"Message"
.
"content":"....",
"serviceType":"{http://service}O derService",
"operation":"buy",
"faul t":"M/Faul t",
"messageType": "{http:// message} O der Request ",
"timestanp": 1347028592880
oA
"type": " ResponseRecei ved",
"context":[{
"val ue": " 12345"
oA
"val ue": " ABC124",
"type": " Message"
.
"content":"....",
"serviceType":"{http://service}OderService",
"operation":"buy",
"faul t": " Qut Of St ock",
"messageType": "{http://nessage} Qut O St ock",
"repl yTol d": " ABC123",
"tinmestanp": 1347028593010
M.
"origin":{
"host":"Saturn",
"principal":"Fred",
"node": " Sat ur n1",
"thread": " Thr ead- 1"

4.2.2. Querying Activity Events using an Expression

POST request to URL: <host >/ over| ord-rtgov/activity/query
The service uses basic authentication, with the default username adni n and password over | or d.

The request contains the JSON encoding of the Query Specification (see API documentation for
+org.overlord.rtgov.activity.server.QuerySpec+) which has the following properties:

Property Description

fromTimestamp Optionally specifies the start date/time for the
activity units required. If not specified, then
the query will apply to activity units from the
first one recorded.

58

Retrieving an Activity Unit

Property Description

toTimestamp Optionally specifies the end date/time for the
activity units required. If not specified, then
the query will relate up to the most recently
recorded activity units.

expression An optional expression that can be used to
specify the activity events of interest.

format Optionally specifies the format of the
expression. The value must be supported
by the configured activity store. The only
supported format currently is "jpgl" (Java
Persistence Query Language).

The response contains a list of ActivityType objects encoded in JISON, which would be similar in
form to the example shown above when recording a list of activity units. (See APl documentation
fororg. overlord.rtgov. activity. model . Acti vityType).

4.2.3. Retrieving an Activity Unit
GET request to URL: <host >/ overl ord-rtgov/activity/unit?id=<unitld>
The service uses basic authentication, with the default username adni n and password over | or d.

The <unitld> represents the identifier ~ associated with the ActivityUnit
that is being retrieved encoded in JSON. (See APl documentation for
org.overlord.rtgov.activity. nodel . ActivityUnit).

4.2.4. Retrieve Activity Events associated with a Context Value

GET request to URL: <host >/ overl ord-rtgov/activity/events?
t ype=<cont ext Type>&val ue=<i dentifier>

The service uses basic authentication, with the default username adni n and password over | or d.

The <contextType> represents the context type, e.g. Conversation, Endpoint, Message or
Link. This is explained in the Information Processor section of this chapter, or see the API
documentation for or g. over |l ord. rtgov. acti vity. nodel . Cont ext . Type.

The <identifier> represents the correlation value associated with the ActivityType(s) that are being
retrieved.

Two additional optional query parameters can be provided, st art being the start timestamp, and
end for the end timestamp. These parameters can be used to scope the time period of the query.

The response is a list of Activity Type objects (see
org.overlord.rtgov. activity. nodel . ActivityType in the APl documentation) encoded in
JSON.

59

60

Chapter 5.

Chapter 5. Analyzing Events

5.1. Configuring an Event Processor Network

An Event Processor Network is a mechanism for processing a stream of events through a network
of linked nodes established to perform specific filtering, transformation and/or analysis tasks.

5.1.1. Defining the Network

The network can be defined as an object model or specified as a JSON representation for
packaging in a suitable form, and subsequently de-serialized when deployed to the runtime
governance server.

The following is an example of the JSON representation of an Event Processor Network. This
particular example defines the "out of the box" EPN installed with the distribution:

"nane" : "Overl ord- RTGov- EPN',

"version" : "1.0.0.Final",

"subscriptions" : [{
"nodeNane" : "SOAEvents",
"subject" : "ActivityUnits"

"nodeNane" : "ServiceDefinitions",
"subject" : "ActivityUnits"

"nodeNane" : "SituationsStore",
"subj ect" : "Situations"

I,
"nodes" : [
{
"nane" : "SOAEvents",
"sourceNodes" : [1,
"destinationSubjects" : ["SOAEvents"],
"maxRetries" : 3,
"retrylnterval" : O,
"event Processor" : {
"@l ass"
"org.overlord. rtgov. content.epn. SOAActi vi tyTypeEvent Splitter"
b
"predicate" : null,
"notifications" : []
oA
"nane" : "ServiceDefinitions",
"sourceNodes" : [1,

61

Chapter 5. Analyzing Events

"destinationSubjects" : [1,
"maxRetries" : 3,
"retrylnterval" : O
"event Processor" : {
"@l ass"
"org.overlord. rtgov. content.epn. Servi ceDefinitionProcessor"
b
"predicate" : null,
"notifications" : [{
"type" : "Results",
"subject” : "ServiceDefinitions"
bl
oA
"nane" : "Servi ceResponseTi nes",
"sour ceNodes" : ["ServiceDefinitions"],
"destinationSubjects" : ["ServiceResponseTi nes"],
"maxRetries" : 3,
"retrylnterval" : O,
"event Processor” : {
"@l ass"
"org.overlord. rtgov. content.epn. Servi ceResponseTi neProcessor"
H
"predicate" : null,
"notifications" : [{
"type" : "Results",
"subj ect" : "ServiceResponseTi nes"
bl
oA
"nane" "SituationsStore",
"maxRetries" : 3,
"retrylnterval" : O
"event Processor" : {
"@l ass" : "org.overlord.rtgov. ep.|pa. JPAEvent Processor",
"entityManager" : "overlord-rtgov-epn-non-jta"
}

Another example of a network, used within one of the quickstarts is:

{
"name" : "AssessCreditPolicyEPN',
"version" : "${project.version}",
"subscriptions" : [{
"nodeNanme" : "AssessCredit",
"subj ect” : "SOAEvents"
P
"nodes" : [

62

Defining the Network

"nane" : "AssessCredit",
"sour ceNodes" : [],
"destinationSubjects" : [],
"maxRetries" : 3,
"retrylnterval" : O,
"predicate" : {
"@l ass" : "org.overlord.rtgov.ep. mvel . WELPr edi cat e",
"expression" : "event.serviceProvider &% !event.request
&& event. serviceType == \"{urn: sw tchyard-qui ckstart -
deno: orders: 0. 1. 0} Order Service\""
iE
"event Processor" : {
"@lass" : "org.overlord.rtgov.ep.nvel . WELEvent Processor",
"script" : "AssessCredit.nmvel",
"services" : {
"CacheManager" : {
"@l ass"
"org.overlord. rtgov. common. i nfi ni span. servi ce. | nfi ni spanCacheManager"
}
iE
"paraneters" : {
"creditLimt" : 150

This example illustrates the configuration of a service associate with the event processor, as well
as a predicate.

The top level elements of this descriptior are:

Field Description

name The name of the network.

subscriptions The list of subscriptions associated with the
network, discussed below.

nodes The nodes that form the connected graph
within the network, discussed below.

version The version of the network. Versions can be
expressed using three schemes:

Numeric - i.e. simply define the version as a
number

Dot Format - i.e. 1.5.1.Final Any alpha,
numeric and symbols

63

Chapter 5. Analyzing Events

When comparing versions, for example when determining whether a newly deployed EPN has
a higher version than an existing network with the same name, then initially the versions will
be compared as numeric values. If either are not numeric, then they will be compared using
dot format, with each field being compared first as numeric values, and if not based on lexical
comparison. If both fields don’t have a dot, then they will just be compared lexically.

5.1.1.1. Subscription

The subscription element is used to define a subject that the network is interested in, and the
name of the node to which the events from that subject should be routed.

This decoupled subscription approach enables multiple networks to register their interest in events
from the same subject. Equally multiple nodes within the same network could subscribe to the

same subject.
The fields associated with this component are:
Field

‘ Subject

nodeName

Description

‘ The subject to subscribe to.

The name of the node within the network to
route the events to.

Reserved subjects

This is a list of the subjects that are reserved for Overlord’s use:

Subject

Purpose

ActivityUnits This subject is used to
publish events of the type
org.overlord.rtgov.activity. nodel . Actiy
produced when activity information is
recorded with the Activity Server.

5.1.1.2. Node

This element is used to define a particular node in the graph that forms the network, and has the

following fields:

Field

name

Description

The name of the node.

sourceNodes

A list of node names that represent the
source nodes, within the same network, that
this node receives its events from. Therefore,
if this list is empty, it means that the node

ityUnit,

Defining the Network

Field Description

destinationSubjects

maxRetries

is a root node and should be the target of a
subscription.

A list of inter-EPN subjects to publish any
resulting events to. Note: these subjects are
only of relevance to other networks.

The maximum number of times an event
should be retried, following a failure, before
giving up on the event.

retrylnterval

The delay that should occur between retry
attempts - may only be supported in some
environments.

eventProcessor

predicate

Defines the details for the event processor
implementation being used. At a minimum,
the value for this field should define a
@class property to specify the Java class
name for the event process implementation
to use. Other general fields that can be
configured are, the map of services and
the map of parameters that can be used

by the event processor. Depending upon
which implementation is selected, the other
fields within the value will apply to the event
processor implementation.

This field is optional, but if specified will
define a predicate implementation. As with
the event processor, it must at a minimum
define a @class field that specifies the Java
class name for the implementation, with
any additional fields be used to initialize the
predicate implementation.

notifications

A list of natifications. A natification entry

will define its type (explained below) and
the notification subject upon which the
information should be published. Unlike the
destinationSubjects described above, which
are subjects for inter-EPN communication,

these natification subjects are the mechanism

for distribution information out of the EPN
capability, for presentation to end-users
through various means.

Notify Types

65

Chapter 5. Analyzing Events

The notify types field defines what type of notifications should be emitted from a node when
processing an event. The notifications are the mechanism used by potentially interested
applications to observe what information each node is processing, and the results they produce.

The possible values for this field are:

Field Description

Processed This type indicates that a notification should
be created when an event is considered
suitable for processing by the node. An event
is suitable either if no predicate is defined, or
if the predicate indicates the event is valid.

Results This type indicates that a notification should
be created for any information produced as
the result of the event processor processing
the event.

Tip

Notifications are the mechanism for making information processed by the Event
Processor Network accessible by interested parties. If a notity type(s) is not defined
for a node, then it will only be used for internal processing, potentially supplying
the processed event to other nodes in the network (or other networks if destination
subject(s) are specified).

5.1.2. Registering the Network

5.1.2.1. JEE Container

The Event Processor Network is deployed within the JEE container as a WAR file with the following
structure:

warfile

META- | NF
| - beans. xmn

VAEB- | NF
| -cl asses
| | -epn.json
| | - <cust om cl asses/ resour ces>
I
I

-lib
| -epn-| oader-jee.jar

66

Registering the Network

| | -<addi tional |ibraries>

The epn. j son file contains the JSON representation of the EPN configuration.

The epn-loader-jee.jar acts as a bootstrapper to load and register the Event Processor
Network.

If custom predicates and/or event processors are defined, then the associated classes and
resources can be defined in the VEB- | NF/ ¢l asses folder or within additional libraries located in
the VEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>....</groupld>
<artifactld>. ...</artifactld>
<version>....</version>
<packagi ng>war </ packagi ng>
<nane>. ... </ nanme>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>
<dependency>
<gr oupl d>or g. over| ord. rt gov. event - pr ocessor - net wor k</ gr oupl d>
<artifactld>epn-core</artifactld>
<versi on>${rtgov. versi on} </ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>or g. overl ord. rt gov. event - pr ocessor - net wor k</ gr oupl d>
<artifactld>epn-|oader-jee</artifactld>
<versi on>${rtgov. versi on} </ versi on>
</ dependency>

</ dependenci es>
</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

67

Chapter 5. Analyzing Events

<bui | d>
<fi nal Nane>sl| anoni t or - epn</ f i nal Nane>
<resour ces>
<resour ce>
<di rect ory>src/ mai n/ resour ces</ di rect ory>
<filtering>true</filtering>
</ resource>
</ resour ces>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<fai | OnM ssi ng\WebXni >f al se</fai | OnM ssi ng\WebXm >
<ar chi ve>
<mani fest Entri es>
<Dependenci es>depl oynent . over| or d-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ archi ve>
</ confi guration>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

5.1.2.2. OSGi Container

The Event Processor Network is deployed within the OSGi container as a JAR file with the
following structure:

jarfile

- META- | NF
| - MANI FEST. MF

-epn.j son

-epn-| oader-osgi .j ar
-<custom cl asses/resour ces>
-<additional |ibraries>

The MANI FEST. MF file is important, as it contains the OSGi metadata required for the container to
understand the contents and imported packages.

The epn. j son file contains the JSON representation of the EPN configuration.

The epn-1 oader-osgi.jar acts as a bootstrapper to load and register the Event Processor
Network.

If custom predicates and/or event processors are defined, then the associated classes, resources
and additional libraries can be located in the top level folder.

68

Registering the Network

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld>....</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<nane>. ... </ nanme>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>
<dependency>
<groupl d>or g. overl ord. rt gov. event - pr ocessor - net wor k</ gr oupl d>
<artifactld>epn-core</artifactld>
<versi on>${rtgov. versi on} </ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>or g. over| ord. rt gov. event - pr ocessor - net wor k</ gr oupl d>
<artifactl|d>epn-| oader-osgi</artifactld>
<ver si on>${rt gov. versi on} </ ver si on>
</ dependency>

</ dependenci es>

<bui | d>
<final Name>. . .. </ fi nal Name>
<resour ces>
<resour ce>
<di rect ory>src/ mai n/ r esour ces</ di rect ory>
<filtering>true</filtering>
</resource>
</ resources>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. f el i x</ gr oupl d>
<artifactld>maven-bundl e-pl ugi n</artifactld>
<ext ensi ons>t r ue</ ext ensi ons>
<confi guration>
<instructions>
<Bundl e- Synbol i cName>${ proj ect . arti fact | d} </ Bundl e- Synbol i cNane>
<Bundl e- Ver si on>${ pr oj ect . ver si on} </ Bundl e- Ver si on>

69

Chapter 5. Analyzing Events

<Bundl e- Acti vat or >or g. over | ord. rt gov. epn. | oader. osgi . EPNAct i vat or </
Bundl e- Act i vat or >
<l nport - Package>
l'javax.inject.*, !javax. enterprise.*,!javax. persistence.*

*

</ | nport - Package>

<Enbed- Dependency>*; scope=conpi | e| runt i me</ Enmbed- Dependency>
</instructions>
</ confi guration>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

</ pr oj ect >

5.1.3. Supporting Multiple Versions

Event Processor Networks define a version number that can be used to keep track of the evolution
of changes in a network.

When a network is deployed to a container, and used to process events, a newer version of
the network can be deployed along side the existing version to ensure there is continuity in the
processing of the event stream. New events presented to the network will be processed by the
most recent version, while events still being processed by a particular version of the network, will
continue to be processed by the same version - thus ensuring that changes to the internal structure
of the network do not impact events that are mid-way through being processed by the network.

The management features, discussed later in the User Guide, can be used to determine when an
older version of the network last processed an event - and therefore when an older version has
been inactive for a suitable amount of time, it can be unregistered.

5.2. Event Processors

As previously mentioned, all EventProcessor implementations can define the following
information:

Field Description

services The optional map of names to services. The
current service types are listed at the bottom
of this section.

parameters The optional map of names to parameters.
These parameters can be used to customize
the behaviour of an event processor.

asynchronous This optional and experimental boolean flag
enables an event processor to produce its
results asynchronously. This has been added

70

Drools Event Processor

Field Description

to support CEP, and currently means any
results are processed as individual events
which may be less efficient.

Although custom event processors can be defined, there are some "out of the box"
implementations. These are discussed in the following sub-sections.

5.2.1. Drools Event Processor

The Drools

Processor implementation

(org. overlord. rtgov. ep. drool s. Drool sEvent Processor) enables events to be processed by
a Complex Event Processing (CEP) rule. This implementation defines the following additional

fields:

Field Description

ruleName

eventProcessingMode

clockType

The name of the rule, used to locate the rule
definition in a file called "<ruleName>.drl".

This optional field identifies the event
processing mode. Valid values are cloud
(default) and stream. If stream is chosen, then
you will also need to set the asynchronous
property to true.

The optional clock type. Valid values are
realtime (default) and pseudo.

An example of such a rule is:

i mport org.overlord.rtgov
i mport org.overlord.rtgov

gl obal org.overlord.rtgov

decl are Request Recei ved
@ol e(event)

@i nestanmp(tinestanp

@xpi res(2n20s)
end

decl are ResponseSent
@ol e(event)

@i nestanp(tinestanp

@xpi res(2n20s)
end

rule "correl ate request and response"

.activity. nodel . soa. Request Recei ved
.activity. nodel . soa. ResponseSent

. ep. EPCont ext epc

Chapter 5. Analyzing Events

when
$req : Request Received($id : nmessageld) fromentry-point "Purchasing"
$resp : ResponseSent(replyTold == $id, this after[0,2nmR20s] $req) from
entry-poi nt "Purchasi ng"
t hen

epc. | ogl nf o("REQUEST: "+$reqg+" RESPONSE: "+$resp);

java. util.Properties props=new java.util.Properties();
props. put ("requestld", $req.get Messagel d());
props. put ("responsel d", $resp.get Messagel d());

| ong responseTi ne=$r esp. get Ti nest anp() - $r eq. get Ti nest anp() ;

epc. | ogDebug(" CORRELATION on id '"+$i d+"' response tinme "+responseTi ne);
props. put ("responseTi ne", responseTi ne);

epc. handl e(props);

end

This is an example of a rule used to correlate request and response events. When a correlation is
found, then a ResponseTime object is created and "forwarded" to the Event Processor Network
for further processing using the handle method.

The source of the events into the rule are named entry points, where the name relates to the
source node or subject that supplies the events.

The rule has access to external capabilities through the EPContext, which is defined in the
statements:

gl obal org.overlord.rtgov. ep. EPCont ext epc

This component is used at the end of the above example to handle the result of the event
processing (i.e. to forward a derived event back into the network).

The rule can also access parameters using the getParameter(name) method on the context. See
the javadoc for the or g. overl ord. rt gov. ep. EPCont ext interface for more information.

If an error occurs, that requires the event to be retried (within the Event Processor Network), or
the business transaction blocked (when used as a synchronous policy), then the rule can either
throw an exception or return the exception as the result using the handle() method.

Caution

Temporal rules do not currently work in a clustered environment. This is because
correlation between events occurs in working memory, which is not shared across

72

JPA Event Processor

servers. Therefore for the correlation to work, all relevant events must be received
by a single server.

5.2.2. JPA Event Processor

A JPA based Event Processor implementation
(org.overlord. rtgov. ep.jpa. JPAEvent Processor) enables events to be persisted. This
implementation defines the following additional fields:

Field Description

‘ entityManager ‘ The name of the entity manager to be used. ‘

5.2.3. Mail Event Processor

A mail based Event Processor implementation
(org.overlord. rtgov. ep. mai |l . Mai | Event Processor) enables events to be transformed and
sent as an email. This implementation defines the following additional fields:

Field Description

from The from email address.
to The list of to email addresses.
subjectScript The location of the MVEL script, which may

be relative to the classpath, used to define the
email subject.

contentScript The location of the MVEL script, which may
be relative to the classpath, used to define the
email content.

contentType The optional type of the email content. By
default it will be "text/plain”.

jndiName The optional JNDI name locating the JavaMail
session.

5.2.4. MVEL Event Processor

A MVEL based Event Processor implementation
(org. overlord. rtgov. ep. nvel . MELEvent Processor) enables events to be processed by a
MVEL script. This implementation defines the following additional fields:

Description

script The location of the MVEL script, which may
be relative to the classpath.

The script will have access to the following variables:

73

Chapter 5. Analyzing Events

Variable Description

source The name of the source node or subject upon
which the event was received.

event The event to be processed.

retriesLeft The number of retries remaining.

epc The EP context

(org. overlord. rtgov. ep. EPCont ext),
providing some utility functions for use by
the script, including the handle method for
pushing the result back into the network,
getParameter method for obtaining custom
properties, and various logging methods.

If an error occurs, that requires the event to be retried (within the Event Processor Network), or
the business transaction blocked (when used as a synchronous policy), then the script can return
the exception as the result using the handle() method.

5.2.5. Supporting Services

This section describes a set of supporting services available to some of the Event Processor
implementations. See the documentation for the specific Event Processor implementations for

information on how to access these services.

5.2.5.1. Cache Manager

Description

The purpose of the Cache Manager service is to enable event processors to store and retrieve

information in named caches.

API

Method Description

<K,V> Map<K,V> getCache(String name)

This method returns the cache associated
with the supplied name. If the cache does not
exist, then a null will be returned.

boolean lock(String cacheName, Object key)

This method locks the item, associated with
the supplied key, in the named cache.

Implementations

Infinispan

Class name: or g. over | ord. rt gov. common. i nfi ni span. servi ce. I nfi ni spanCacheManager

This class provides an implementation based on Infinispan. The properties for this class are:

74

Predicates

Property Description

container The optional JNDI name for the infinspan
container defined in the st andal one-
full . xml orstandal one-full-ha.xm file.

The container will be obtained in three possible ways.
(a) if the container is explicitly defined, then it will be used

(b) if the container is not defined, then a default container will be obtained from the $JB0SS_HOVE/
st andal one/ confi guration/overlord-rtgov. properties file for the infinispan.container

property.

(c) if no default container is defined, then a default cache manager will be created.

5.3. Predicates

Although custom predicates can be defined, there are some "out of the box" implementations:

5.3.1. MVEL Predicate

A MVEL based Predicate implementation (org. overlord.rtgov. ep. nvel . WELPr edi cat e)
enables events to be evaluated by a MVEL expression or script. This implementation defines the
following additional fields:

Description

expression The MVEL expression used to evaluate the
event.

script The location of the MVEL script, which may

be relative to the classpath.

@

The expression or script will have access to the following variables:

Variable Description

event The event to be processed.

75

76

Chapter 6.

Chapter 6. Accessing Derived
Information

6.1. Configuring Active Collections

An Active Collection is similar to a standard collection, but with the ability to report change
notifications when items are inserted, updated or removed. The other main difference is that they
cannot be directly updated - their contents is managed by an Active Collection Source which acts
as an adapter between the collection and the originating source of the information.

This section will explain how to define an Active Collection Source and register it to indirectly
create an Active Collection.

6.1.1. Defining the Source

The source can be defined as an object model or specified as a JSON representation for packaging
in a suitable form, and subsequently de-serialized when deployed to the runtime governance
server.

The following is an example of the JSON representation that defines a list of Active Collection
Sources - so more than one source can be specified with a single configuration:

{

"@l ass"
"org.overlord. rtgov. active. col | ection. epn. EPNActi veCol | ecti onSour ce",

"nane" : "Servi ceResponseTi nes",
"type" : "List",
"itemExpiration" : O,
"maxltens" : 100,
"subj ect" : "Servi ceResponseTi nes",
"aggregationbDuration" : 1000,
"groupBy" : "serviceType + \":\" + operation + \":\" + fault",
"aggregationScript" : "AggregateServi ceResponseTi ne. nvel "

A
"@l ass"

"org.overlord.rtgov. active. col | ection. epn. EPNActi veCol | ecti onSour ce",

"nane "Servi ceDefinitions",
“type" : "Map",
"itemExpiration" : O,
"maxl tenms" : 100,
"subj ect" : "ServiceDefinitions",
"schedul edScript" : "TidyServiceDefinitions.nvel",
"schedul edl nterval " : 60000,
"properties" : {
"maxSnapshots" : 5

77

Chapter 6. Accessing Derived ...

iE

"mai nt enanceScri pt" : "MintainServiceDefinitions. nnel"
oA

"@l ass"
"org.overlord. rtgov. active. col | ecti on. epn. EPNActi veCol | ecti onSour ce",

"nane" : "Situations",

"type" : "List",

"itemExpiration" : 40000

"maxltens" : O,

"subject" : "Situations"

"activeChangelLi steners” : [{

"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Nane" : "overlord.rtgov. services: nane=Si tuati ons",
"descriptionScript" : "SituationDescription.nmel"

"insert TypeScript" : "SituationType. mvel "
Pl
"derived": [{
"nane": "FilteredSituations",
"predicate": ({
"type": "MVEL",
"expression": "map = context.get Map(\" I gnoredSituati onSubjects\"); if
(map == null) { return false; } return !map.contai nsKey(subject);"
},
"properties" : {
"active" : false

bl
oA

"@l ass"
"org.overlord.rtgov. active. col |l ection. Acti veCol | ecti onSource",

name "l gnoredSituationSubj ects",
“type" : "Map",
"l azy" : true,
"factory" : {
"@l ass"
"org.overlord.rtgov. active.col | ection.infinispan.InfinispanActiveCol |l ectionFactory"
"cache" : "lgnoredSituationSubjects"
}
A
"@l ass"
"org.overlord.rtgov. active. col |l ection. ActiveCol | ecti onSource",
"nane" : "Principals",
"type" : "Map",
"l azy" : true,
"visibility" : "Private",
"factory" : {
"@l ass"
"org.overlord.rtgov. active.col | ection.infinispan.I|nfinispanActiveCol |l ectionFactory"
"cache" : "Principals"

78

Defining the Source

This configuration shows the definition of multiple Active Collection Sources. The top level
elements for a source, that are common to all active collection sources, are:

Field Description

@class

This attribute defines the Java
class implementing the Active
Collection Source. This class must
be directly or indirectly derived from
org.overlord.rtgov. active. col |l ection. Ac

name

The name of the Active Collection that will be
created and associated with this source.

type

The type of active collection. The currently
supported values (as defined in the

org.overlord.rtgov. active. col |l ection. Ac
enum are;

List (default)

Map

visibility

lazy

The visibility of active collection, i.e.
whether accessible via the remote access
mechanisms such as REST. The currently
supported values (as defined in the
org.overlord. rtgov. active. col | ection. Ac
enum are:

Public (default)

Private

Whether active collection should be created
on startup, or lazily instantiated upon first use.
The default is false.

itemExpiration

If not zero, then defines the number of
milliseconds until an item in the collection
should expire (i.e. be removed).

maxltems

If not zero, defines the maximum number of
items that the collection should hold. If an
insertion causes the size of the collection to
increase above this value, then the oldest
item should be removed.

79

tiveColl ecti onS

tiveCollectionT

tiveColl ectionVi

Chapter 6. Accessing Derived ...

Field Description

aggregationDuration

The duration (in milliseconds) over which the
information will be aggregated.

groupBy

aggregationScript

An expression defining the key to be used to
categorize the information being aggregated.
The expression can use properties associated
with the information being aggregated.

The MVEL script to be used to aggregate the
information. An example will be shown in a
following sub-section.

scheduledInterval

scheduledScript

maintenanceScript

The interval (in milliseconds) between the
invocation of the scheduled script.

The MVEL script invoked at a fixed interval to
perform routine tasks on the collection.

By default, events received by the active
collection source will be inserted into the
associated active collection. If a MVEL
maintenance script is specified, then it will
be invoked to manage the way in which the
received information will be applied to the
active collection.

activeChangeListeners

factory

properties A set of properties that can be access by the
various scripts.
derived An optional list of definitions for derived

collections that will be created with the

top level active collection, and retained
regardless of whether any users are currently
accessing them. (Normally when a derived
collection is created dynamically on demand,
once it has served its purpose, it will be
cleaned up). The definition will be explained
below.

The list of active change listeners that
should be instantiated and automatically
registered with the Active Collection. The
listeners must be derived from the Java class

org.overlord.rtgov. active. col | ection. Ab

The optional factory for creating the
active collection, derived from the class

org.overlord.rtgov. active. col |l ection. Ac

80

stract Acti veChat

tiveCol | ecti onF:

Defining the Source

The additional attributes associated with the EPNAct i veCol | ect i onSour ce implementation will
be discussed in a later section.

6.1.1.1. Scripts
Aggregation

The aggregation script is used to (as the name suggests) aggregate information being provided
by the source, before being applied to the collection. The values available to the MVEL script are:

Variable Description

events ‘ The list of events to be aggregated.

The aggregated result will be returned from the script.
Scheduled

The scheduled script is used to perform regular tasks on the active collection, independent of any
information being applied to the collection. The values available to the MVEL script are:

Variable Description
acs The active collection source.
acs.properties The properties configured for the active

collection source.

variables A map associated with the active collection
source that can be used by the scripts to
cache information.

Maintenance

The maintenance script is used to manage how new information presented to the source is applied
to the active collection. If no script is defined, then the information will be inserted by default. The
values available to the MVEL script are:

Variable Description
acs The active collection source.
acs.properties The properties configured for the active

collection source.

key The key for the information being inserted.
May be null.

value The value for the information being inserted.

variables A map associated with the active collection

source that can be used by the scripts to
cache information.

Chapter 6. Accessing Derived ...

An example script, showing how these variables can be used is:

i nt maxSnapshot s=acs. properti es. get (" maxSnapshots");
snapshots = vari abl es. get ("snapshots");

if (snapshots == null) {
snapshots = new java.util.ArrayList();
vari abl es. put ("snapshot s", snapshots);

}

/1 Update the current snapshot
current Snapshot = vari abl es. get (" current Snhapshot™);

i f (currentSnapshot == null) {
current Snapshot = new java. util.HashMap();

}

snapshot s. add(new j ava. uti | . HashMap(current Snapshot));
current Snapshot . cl ear () ;

/'l Renmpbve any snapshots above the nunber configured
whi | e (snapshots. size() > naxSnapshots) {
snapshot = snapshots. renove(0)

}

/'l Merge snapshots
nmer ged =
org.overlord.rtgov. anal ytics.util.ServiceDefinitionUil.nergeSnapshots(snapshots);

/1 Update existing, and renpbve definitions no | onger relevant
foreach (entry : acs.activeCollection) {
org.overlord.rtgov. anal ytics. servi ce. Servi ceDefinition sd=null

i f (merged. contai nskey(entry. key)) {

acs. update(entry. key, nerged. get(entry. key));
} else {

acs.renove(entry. key, entry.val ue);

}

nmer ged. renove(entry. key) ;

}

/1 Add new definitions

for (key : merged. keySet()) {
acs.insert (key, nerged.get(key));

}

82

Defining the Source

This example shows the script accessing the Active Collection Source and its properties, as well
as accessing (and updating) the variables cache associated with the source.

6.1.1.2. Derived Active Collections

The derived element defines a list of derived active collection definitions that will be instantiated
with the active collection.

The fields associated with this component are:

Field Description

name The derived active collection’s name.

predicate The predicate that will determine what subset
of entries from the parent collection should be
available within the derived collection.

properties Properties that will be passed to the derived
active collection.

The following properties can be defined:

Property Description

active This optional property indicates whether

the derived collection should be actively
maintained (i.e. active = true), which is the
default, or whether the contents should be
determined when a query is performed. The
main reason for setting this property to false
is due to the predicate being based on volatile
information, and therefore the contents needs
to be evaluated at the time it is requested.

6.1.1.3. Active Change Listeners

The activeChangeListeners element defines a list of Active Change Listener implementations that
will be instantiated and registered with the active collection.

The fields associated with this component are:

Description

@class The Java class that provides the
listener implementation and is
directly or indirectly derived from
org.overlord.rtgov. acti ve. col | ecti on. Abstract Acti veChal

83

Chapter 6. Accessing Derived ...

The remaining attributes in the example above will be discussed in a subsequent section related
to reporting results via JIMX notifications.

6.1.1.4. Factory

The factory element defines an Active Collection Factory implementation that will be used to create
the active collection.

The fields associated with this component are:

Description

@class The Java class that provides the
factory implementation and is
directly or indirectly derived from
org.overlord.rtgov. active. col |l ection. Acti veCol | ecti onFs

The current list of factory implementations are defined below.
Infinispan

The fields associated with the
org.overlord.rtgov. active. col |l ection.infinispan.|nfinispanActiveCollectionFactory
component are:

Field Description

cache The name of the cache to be presented as an
Active Map.
container The optional JNDI name used to obtain the

cache container. If not defined, then the
default container will be obtained from the
infinispan.container property from over | or d-
rtgov. properti es file in the $JB0SS HOVE/
st andal one/ confi gur ati on folder. If the
default container is not defined, then a default
cache manager will be instantiated.

6.1.2. Registering the Source

6.1.2.1. JEE Container

The Active Collection Source is deployed within the JEE container as a WAR file with the following
structure:

warfil e

84

Registering the Source

I

| - META- | NF

| | - beans. xm

I

| - VEB- | NF

| | -cl asses

| [| -acs.j son

| | | - <cust om cl asses/resour ces>
I I

| [-1ib

| | -acs- | oader-j ee.jar

| | -<additional |ibraries>

The acs. j son file contains the JSON representation of the Active Collection Source configuration.

The acs-|oader-jee.jar acts as a bootstrapper to load and register the Active Collection
Source.

If custom active collection source and/or active change listeners are defined, then the associated
classes and resources can be defined in the VEB- | NF/ cl asses folder or within additional libraries
located in the VEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld>....</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<name>. ... </ name>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>

<dependency>
<groupl d>or g. overl ord. rtgov. acti ve- queri es</ groupl d>
<artifactld>active-collection</artifactld>
<versi on>${rtgov. versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<groupl d>or g. overl ord. rt gov. acti ve- queri es</ groupl d>
<artifactld>acs-|oader-jee</artifactld>

85

Chapter 6. Accessing Derived ...

<versi on>${rt gov. versi on} </ versi on>
</ dependency>

</ dependenci es>
</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord rtgov modules:

<bui | d>
<final Name>. ... </fi nal Name>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<f ai | OnM ssi ng\WebXni >f al se</f ai | OnM ssi ng\WebXmi >
<archi ve>
<mani f est Entri es>
<Dependenci es>depl oynent . over| or d-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ archi ve>
</ confi guration>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

6.1.2.2. OSGi Container

The Active Collection Source is deployed within the OSGi container as a JAR file with the following
structure:

jarfile

- META- | NF
| - beans. xm

-acs. json

-acs-| oader-osgi.jar
-<custom cl asses/resources>
-<additional |ibraries>

The acs. j son file contains the JSON representation of the Active Collection Source configuration.

The acs-1 oader-osgi.jar acts as a bootstrapper to load and register the Active Collection
Source.

86

Registering the Source

If custom active collection source and/or active change listeners are defined, then the associated
classes, resources and additional libraries can be located in the top level folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld>....</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<name>. ... </ nanme>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>

<dependency>
<groupl d>or g. overl ord. rtgov. acti ve- queri es</ groupl d>
<artifactld>active-collection</artifactld>
<versi on>${rtgov. versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>org. over | ord. rt gov. acti ve- queri es</ gr oupl d>
<artifactld>acs-| oader-osgi</artifactld>
<ver si on>${rt gov. versi on} </ ver si on>

</ dependency>

</ dependenci es>

<bui | d>

<final Name>. ... </fi nal Name>

<resour ces>

<resour ce>
<di rect ory>src/ mai n/ r esour ces</ di rect ory>
<filtering>true</filtering>

</resource>

</ resources>

<pl ugi ns>

<pl ugi n>
<gr oupl d>or g. apache. f el i x</ gr oupl d>
<artifactld>maven-bundl e-pl ugi n</artifactld>
<ext ensi ons>t r ue</ ext ensi ons>
<confi guration>

87

Chapter 6. Accessing Derived ...

<instructions>
<Bundl e- Synbol i cName>${ proj ect. arti fact | d} </ Bundl e- Synbol i cNane>
<Bundl e- Ver si on>${ pr oj ect . ver si on} </ Bundl e- Ver si on>
<Bundl| e- Act i vat or >or g. overl ord. rt gov. acs. | oader. osgi . ACSAct i vat or </
Bundl e- Act i vat or >
<l nport - Package>
ljavax.inject.*, !javax. enterprise.*,!javax. persistence. *,

</ | nport - Package>
<Enbed- Dependency>*; scope=conpi | e| runti me</ Embed- Dependency>
</instructions>
</ confi guration>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

</ pr oj ect >

6.2. Presenting Results from an Event Processor
Network

As discussed in the preceding section, an Active Collection Source can be configured to obtain
information from an Event Processor Network, which is then placed in the associated Active
Collection. This section will explain in more detail how this can be done using the specific Active
Collection Source implementation.

{
"@l ass"
"org.overlord.rtgov. active. col | ection. epn. EPNActi veCol | ecti onSour ce",
"nane" "Si tuations",
"type" : "List",
"itemExpiration” : 40000,
"maxl tems" : O,
"subj ect" : "Situations",
"acti veChangelLi steners" : [{
"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Nane" : "overlord.rtgov. services: nane=Si tuati ons",
"descriptionScript" : "SituationDescription.nmel",
"insert TypeScript" : "Situati onType. mvel "
P,
"derived": [{
"nane": "FilteredSituations",
"predicate": {
"type": "MVEL",
"expression": "map = context.get Map(\" I gnoredSituati onSubjects
\"); if (map == null) { return false; } return ! map.contai nsKey(subject);"

88

Presenting Results from an Event Processor Network

I
"properties" : {
"active" : false

I

This configuration shows an example of an Active Collection Source
using the org.overlord.rtgov.active.collection.epn. EPNActi veCol | ecti onSource
implementation. The additional fields associated with this implementation are:

Description

subject The EPN subject upon which the information
has been published.

An example Event Processor Network configuration that will publish information on the subject
(e.g. Situations) specified in the Active Collection Source configuration above is:

{
"name" : " SLAMonitor EPN',
"version" : "${project.version}",
"subscriptions" : [{
"nodeNane" : "SLAViol ati ons",
"subj ect" : "ServiceResponseTi nes"
P
"nodes" : [
{
"name" : "SLAVi ol ati ons",
"sourceNodes" : [],
"destinationSubjects” : ["Situations"],
"maxRetries" : 3,
"retrylnterval" : 0,
"event Processor" : {
"@lass" : "org.overlord.rtgov. ep.drools. Drool sEvent Processor ",
"rul eNane" : "SLAVi ol ati on",
"paraneters" : {
"l evel s" : |
{
"t hreshol d* : 400,
"severity" : "Critical"
iE
{
"t hreshol d* : 320,
"severity" : "High"
iE
{
"t hreshol d* : 260,
"severity" : "Mediunt

89

Chapter 6. Accessing Derived ...

b
{
"t hreshol d* : 200,
"severity" : "Low'
}
]
}
H
"predicate" : null,
"notifications" : [{
"type" : "Processed",
"subject" : "SituationsProcessed"
A
"type" : "Results",
"subject” : "Situations"
bl

6.3. Publishing Active Collection Contents as JMX
Notifications

{
"activeChangeli steners" : [{
"@lass" : "org.overlord.rtgov.active.collection.jm. JMKNotifier",
"obj ect Nane" : "overlord. sanpl e. sl anoni t or: nane=SLAVi ol ati ons",
"insert Type" : "SLAViol ati on"
Pl
}

This configuration shows the use of the JIMXNotifier active change listener implementation. This
implementation has the following additional fields:

Field Description

objectName The MBean (JMX) object name to be used to
report the notification.

descriptionScript The MVEL script that can be used to derive
the description field on the notification. If
not defined, then the information’s toString()
value will be used.

90

Publishing Active Collection Contents as JMX Notifications

Field Description

insertType The type field for the notification when
performing an insert.

insertTypeScript An optional MVEL script that can be used to
derive the type field for an insert.

updateType The optional type field for the natification
when performing an update.

updateTypeScript An optional MVEL script that can be used to
derive the type field for an update.

removeType The optional type field for the notification
when performing a removal.

removeTypeScript An optional MVEL script that can be used to
derive the type field for a remove.

The following JConsole snapshot shows this IMXNoatifier in action, reporting SLA violations from
the associated active collection:

Connection Window Help

0verview| Memory | Threads CLassesl VM Summary| MBeans |

P IMImplementation
P com.sun manaaement
P java lang
P java.nio
P java util logaing
P iboss as
> iboss.as.expr
P ibossisr77
jboss.ita
P iboss modules
P jboss.msc
P iboss.remoting.handler
P iboss.ws
P net sf.ehcache
org.apache.camel
P ora.infinispan
P ora.switchyard.admin
P overlord rtgov.collections
P overlord rtaov collector
P overlord rtgov.networks
~ overlord rtaov services
b @ SituationManaqer
~ @ Situations
> Attributes

} Notifications[2.

=] T B

" Motification buffer

[TimeStamp I[Type][SeqNum][Messaqe I[Event][Sour.]
17:55:45:519 |SLA Violation | |2 |OrderService.fInventorvService exceeded maximum respons |iavax |overl
17:55:45:503 |SLA Violation | |1 |OrderService exceeded maximum response time of 400 ms |iavax ...|overL. .

[Eubscribe] [unsubscribel

[Iél pid: 6664 jboss-modules jar -mp /home/gbrown/testing/overlord/releasefjbo. ..

Figure 6.1.

91

Chapter 6. Accessing Derived ...

6.4. Querying Active Collections via REST

The Active Collections configured within the runtime governance server can be accessed via a
REST service, by POSTing the JSON representation of a query specification to the URL: <host >/
over | ord-rtgov/acnf query

This service used basic authentication, with a default username adni n and password over | or d.

The Query Specification (see or g. overl ord. rtgov. acti ve. col | ecti on. Quer ySpec in the API
documentation) is comprised of the following information:

Attribute Description

collection The active collection name.

predicate Optional. If defined with the parent name,
then can be used to derive a child collection
that filters its parent’s content (and
notifications) based on the predicate.

parent Optional. If deriving a child collection, this
field defines the parent active collection from
which it will be derived.

maxltems Defines the maximum number of items
that should be returned in the result, or O if
unrestricted.

truncate If a maximum number of items is specified,
then this field can be used to indicate whether
the Start or End of the collection should be
truncated.

style Allows control over how the results are
returned. The value Normal means as

it appears in the collection. The value
Reversed means the order of the contents
should be reversed.

properties Map of key/value pairs, used when creating a
derived collection. Currently the only relevant
property is a boolean called active, defaults
to true, which can be used to force queries on
the derived collection to be evaluated when
information requested, in situations where the
predicate is based on volatile information.

The collection field defines the name of the collection - either an existing collection name, or if
defining the predicate and parent fields, then this field defines the name of the derived collection
to be created.

92

Pre-Defined Active Collections

The predicate field refers to a component that implements a predicate interface - the
implementation is defined based on the type field. Currently only a MVEL based implementation
exists, with a single field expression defining the predicate as a string.

For example,
{
"parent" : "Servi ceResponseTi mes",
"max| tenms" : 5000,
"col l ection" : "Order Servi ceSRT",
"predicate" : {
"type" : "MVEL",
"expression" : "serviceType == \"{urn: sw tchyard-qui ckstart -
deno: orders: 0.1. 0} Order Service\" && operation == \"submtOrder\""
¥
“"truncate" : "End",
"style" : "Reversed"
}

If the Active Collection Manager (ACM) does not have a collection named OrderServiceSRT, then
it will use the supplied defaults to create the derived collection. If the collection already exists,
then the contents will simply be returned, allowing multiple users to share the same collection.

The list of objects returned by the query will be represented in JSON.

6.5. Pre-Defined Active Collections

This section describes the list of Active Collections that are provided "out of the box".

6.5.1. ServiceResponseTimes

This active collection is a i st of org. overlord. rtgov. anal ytics. servi ce. ResponseTi ne
objects.

The response times represent an aggregation of the metrics for a particular service, operation and
response/fault, over a configured period. For more details please see the API documentation.

6.5.2. Situations

This active collection is a i st of org.overlord. rtgov. anal ytics. situation. Situation
objects.

The Situation object represents a situation of interest that has been detected within the Event
Processor Network, and needs to be highlighted to end users. For more information on this class,
please see the APl documentation.

This active collection configuration also publishes it contents via a JMX noatifier, based on the
following configuration details:

93

Chapter 6. Accessing Derived ...

[
{
A
"@l ass"
"org.overlord.rtgov. active. col | ecti on. epn. EPNActi veCol | ecti onSour ce",
"nane" "Si tuations",
"type" : "List",
"itemExpiration” : 40000,
"maxltenms" : O,
"subj ect" : "Situations",
"acti veChangelLi steners" : [{
"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Name" : "overlord.rtgov: nane=Si tuations",
"descriptionScript" : "SituationDescription.mel",
"insert TypeScript" : "Situati onType. mvel "
P,
}
]

6.5.3. ServiceDefinitions

This active collection is a map of Service Type name to
org.overlord.rtgov. anal ytics. servi ce. Servi ceDefi ni ti on objects. More details on this
class can be found in the APl documentation.

An example of a service definition, represented in JSON is:

"serviceType":"{http://ww. jboss. or g/ exanpl es} Or der Ser vi ce",
"operations":[{
"nanme": "buy",
"metrics":{
"count ": 30,
"average": 1666,
"m n":500,
"max": 2500

H
"request Response": {
"metrics":{
"count": 10,
"average": 1000,
"m n": 500,
"max": 1500
H

"invocations":[{

94

ServiceDefinitions

"serviceType": "{http://ww.jboss. org/
exanpl es} Credi t AgencyServi ce",
"metrics":{
"count": 10,
"average": 500,
“mn": 250,
"max": 750
1
"operation":"checkCredit"
}H
}
"request Faul t s": [{
"faul t":" UnknownCust omer",
"metrics":{
"count": 20,
"average": 2000
"m n": 1500,
"max": 2500

}H

M

"metrics":{
"count": 30,
"average": 1666,
"m n": 500,
"max": 2500

The list of service definitions returned from this active collection, and the information they represent
(e.g. consumed services), represents a near term view of the service activity based on the
configuration details defined in the collection’s active collection source. Therefore, if (for example)
a service has not invoked one of its consumed services within the time period of interest, then its
details will not show in the service definition.

This information is simply intended to show the service activity that has occurred in the recent
history, as a means of monitoring the real-time situation to deal with emerging problems.

The duration over which the information is retained is determined by two properties in the
ServiceDefinitions active collection source configuration - the "scheduledinterval” (in milliseconds)
which dictates how often a snapshot of the current service definition information is stored, and the
"maxSnapshots” property which defines the maximum number of snapshots that should be used.
So the duration of information retained can be calculated as the scheduled interval multiplied by
the maximum number of snapshots.

95

Chapter 6. Accessing Derived ...

6.5.4. Principals

This active collection is a map of Principal name to a map of named properties. This information
is used to convey details captured (or derived) regarding a principal. A principal can represent a
user, group or organization.

96

Chapter 7.

Chapter 7. Available Services

This section describes the "out of the box" additional services that are provided.

7.1. Call Trace

The "Call Trace" service is used to return a tree structure tracing the path of a business transaction
(as a call/invocation stack) through a Service Oriented Architecture.

The URL for the service’'s REST GET request is: <host>/overlord-rtgov/call/trace/
i nst ance?t ype=<t ype>&val ue=<val ue>

The service uses basic authentication, with a default username adni n and password over| or d.

This service has the following query parameters:

Parameter Description

type The type of the identify value, e.g.
Conversation, Endpoint, Message or Link

value The identifier value, e.qg. if type is
Conversation, then the value would be a
globally unique identifier for the business
transaction

The call trace is returned as a JSON representation of the call trace object model. The top level
class is org. overlord.rtgov. cal |l .trace. nodel . Cal | Tr ace, details can be found in the API
documentation.

7.2. Report Server

@ Note
As of version 2.0, the report server is deprecated, indicating that it will be removed
from the project in a future release. Therefore we suggest that you should not start
using it, and if already using it, plan to migrate off this capability in the new future.
The capability is being deprecated as more sophisticated analysis and reporting
can be achieved through the Kibana/Elasticsearch tools, which are now integrated
from RTGov 2.0.

The "Report Server" service is used to generate instances of a report whose definition has
previously been deployed to the server. This section will explain how to configure and deploy a
report definition, and then how to generate the report instances.

97

Chapter 7. Available Services

7.2.1. Creating and deploying a report definition

The first step is to specify a JSON representation of the
org.overlord.rtgov.reports. Report Definition class (see APl documentation for details).

{
"name" : "SLAReport",
"generator" : {
"@lass" : "org.overlord.rtgov.reports. WELReport Generator",
"scriptlLocation" : "SLAReport.nvel"
}
}

The report definition only contains the name of the report, and the definition of the generat or.
In this case, the org. overlord. rtgov. reports. MELReport Gener at or implementation of the
report generator has been used, which also includes a property to define the location of the report
script (e.g. SLAReport. nvel). This MVEL SLA report script can be found in the sanpl es/ sl a/
report folder.

7.2.1.1. Registering the Report

JEE Container

The Report Definition is deployed within the JEE container as a WAR file with the following
structure:

| -cl asses

| | -reports.json

| | - <cust om cl asses/resour ces>
I

I

-lib

| -reports-1|oader-jee.jar
| -<addi tional |ibraries>

As described above, the reports.json file contains the JSON representation of the report
definition configuration.

The reports-1 oader-jee.jar acts as a bootstrapper to load and register the Report Definition.

98

Creating and deploying a report definition

If custom report generators or scripts are defined, then the associated classes and resources can
be defined in the WEB- I NF/ cl asses folder or within additional libraries located in the WEB- | NF/
l'i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld>....</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<name>. ... </ name>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>

<dependency>
<groupl d>or g. overl ord. rtgov. acti vi ty-anal ysi s</ groupl d>
<artifactld>reports-|loader-jee</artifactld>
<ver si on>${ proj ect . ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. overl ord. rtgov. acti vi ty-anal ysi s</ groupl d>
<artifactld>reports</artifactld>
<ver si on>${ proj ect . ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>
</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<f i nal Name>s| anoni t or - epn</ f i nal Nane>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<fai | OnM ssi ng\WebXni >f al se</f ai | OnM ssi ng\WebXm >

99

Chapter 7. Available Services

<ar chi ve>
<mani fest Entri es>
<Dependenci es>depl oynent . over| or d-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

7.2.2. Generating an instance of the report

The URL for the service’s REST GET request is: <host >/ over | ord-rtgov/report/generate?
<par anet er s>

The service uses basic authentication, with a default username adni n and password over | or d.

This service has the following query parameters:

Parameter Description

report The name of the report to be generated. This
must match the previously deployed report
definition name.

startDay/Month/Year The optional start date for the report. If not
defined, then the report will use all activities
stored up until the end date.

endDay/Month/Year The optional end date for the report. If not
defined, then the report will use all activities
up until the current date.

timezone The optional timezone.

calendar The optional business calendar name. A
default called exists called Default which
represents a working week of Monday to
Friday, 9am to 5pm, excluding Christmas
Day.

All other query parameters that may be provided will be specific to the report definition being
generated.

The operation returns a JSON representation of the
org.overlord.rtgov.reports. nodel . Report class. See the APl documentation for further
details of the object model.

100

Providing a custom Business Calendar

7.2.3. Providing a custom Business Calendar

A custom Business Calendar can be defined as a JSON representation of the
org.overlord.rtgov.reports. node. Cal endar class (see APl documentation for details).
This should be stored in a file whose location is referenced using a property called
"calendar.<CalendarName>" in the over| ord-rt gov. properti es file.

7.3. Service Dependency

The "Service Dependency" service is used to return a service dependency graph as a SVG image.
The graph represents the invocation and usage links between services (and their operations),
and provides a color-coded indication of areas that require attention. Where situations have been
detected against services or their operations, this will be flagged on the service dependency graph
with an appropriate colour reflecting their severity.

The URL for the service's REST GET request is: <host>/overl ord-rtgov/service/
dependency/ overvi ew?w dt h=<val ue>

The service uses basic authentication, with a default username adni n and password over| ord.

This service has the following query parameters:

Parameter Description

width Represents the optional image width. If the
width is below a certain threshold, then a
summary version of the dependency graph
will be provided without text or tooltips (used
to display metrics).

7.3.1. How to customize the severity levels

The severity levels used for the graph nodes and links can be customized by creating a MVEL
script. A default script is provided within the overl ord-rtgov. war, which can be used as a
template. The script is called SeverityAnal yzer.nvel and is located within the /WEB- | NF/
cl asses folder of the over | ord-rt gov. war archive.

An example of the contents of this script is:
Severity severity=Severity. Nornal;

if (sunmary !'= null && latest != null && sunmary.getAverage() > 0) {
doubl e change=l at est . get Aver age()/sunmmary. get Aver age() ;

if (change > 0) {

if (change > 3.0) {
severity = Severity.Critical;

101

Chapter 7. Available Services

} else if (change > 2.2) {
severity = Severity. Serious;

} else if (change > 1.8) {
severity = Severity.Error;

} else if (change > 1.4) {
severity = Severity.Warning;

} else if (change > 1.2) {
severity = Severity.M nor;

return (severity);

The script returns a value of type
org.overlord.rtgov. servi ce. dependency. present ati on. Severity, which is automatically
available as an imported class for use by the script.

The script takes four variables:

Variable Description

summary The summary metric to be evaluated.

history The list of recent metrics, merged to produce
the summary metric.

latest The latest metric.

component The service definition component associated
with the metric. This variable is not used
within the example script above.

If a customized script is created, then its location can be specified in the
MVELSeveri tyAnal yzer. scriptLocation property in the overlord-rtgov.properties
configuration file.

7.4. Situation Manager

The "Situation Manager" service is used to determine whether situations associated with a
particular subject (i.e. service) should be displayed to users via the Situations gadget. The service
supports two operations.

The service uses basic authentication, with a default username adni n and password over | or d.

7.4.1. Ignoring situations related to a subject

The i gnor e operation is used to indicate that situations for a particular subject (i.e. generally a
service type) should not be presented to users via the REST service (and therefore the Situations
gadget).

102

Observing situations related to a subject

The URL for the i gnor e operation’s POST request is: <host >/ overl ord-rtgov/situation/
manager /i gnore

This request supplies a JSON representation of the
org.overlord.rtgov. anal ytics. situation.|gnoreSubject class. See the API
documentation for more information.

The operation responds with a status message indicating whether the operation was successful.

@ Note
Currently wildcards are not supported for subjects.

7.4.2. Observing situations related to a subject

The obser ve operation is used to essentially reverse the actions performed by a previous i gnor e
operation, to make situations for a particular subject (i.e. generally a service type) visible again to
users via the REST service (and therefore the Situations gadget).

The URL for the obser ve operation’s POST request is: <host >/ over| ord-rtgov/si tuation/
manager/ observe

This request supplies a JSON representation of the
org.overlord. rtgov. anal ytics. situation.|gnoreSubject class. See the API
documentation for more information.

The operation responds with a status message indicating whether the operation was successful.

103

104

Chapter 8.

Chapter 8. Managing The
Infrastructure

8.1. Managing the Activity Collector

The Activity Collector mechanism is responsible for collecting activity event information from within
a particular execution environment and reporting it as efficiently as possible to the Activity Server.

This section explains how different Activity Collector implementations may be administered.

8.1.1. Activity Collector

Object Name: overlord.rtgov.collector:name=ActivityCollector

The activity collector has the following configuration properties:

Property Description

CollectionEnabled A boolean property that can be used to
enable or disable activity collection within the
server.

8.1.2. Activity Logger

Object Name: overlord.rtgov.collector:name=ActivityLogger

This component uses a batching capability to enable the information to be sent to the Activity
Server as efficiently as possible. This mechanism has the following configuration properties:

Property Description

MaxUnitCount The maximum number of activity units that
should be batched before sending the group
to the Activity Server.

MaxTimelnterval The maximum amount of time (in
milliseconds) before sending the batch of
events to the server.

The maximum number of items takes precedence, so if it is reached before the defined interval,
then the events will be sent to the server.

If the collector is running within a JEE environment, then these properties can be set via a IMX,
e.g. using the JConsole:

105

Chapter 8. Managing The Infra...

Connection Window Help

0verview| Memory | Threads Classesl VM Summary| |MBean5‘| =l=

P IMImplementation Attribute values

b com.sun.management [Name][VaLue]
iava lana

P iava nio MaxTimelnterval 500

P iava util loaaina MaxUnitCount 1000
jboss.as PendingActivitylnits [v]

P iboss.as.expr

b iboss isr77

P iboss jta

P iboss modules
P iboss.msc
iboss . remoting.handler
P iboss.ws
P net.sf.ehcache
P ora.apache.camel
P ora.switchyard.admin
~ overlord rtaov.collections
@ CollectionManager
P @ Service Definitions
P @ serviceResponseTim
b @ Situations
~ overlord rtqov.collector
= @ Activity Collector
P Attributes

= @ Actl\nt*Loiier

P overlord rtgov.networks

~ overlord rtaov.services
b @ situationManaqer
P @ Situations

(] i []

[Iﬁl pid: 6664 jboss-modules jar -mp /home/gbrown/testing/overlord/release/jbo l

Figure 8.1.

The component also provides a read-only property:

Property Description

PendingActivityUnits This value indicates how many logger
messages are waiting to be sent to the
server. This can be used to guage how busy
the collector is, and whether it is getting
backed up.

8.2. Managing the Event Processor Networks

There are two aspects to managing the Event Processor Network mechanism, the manager
component and the networks themselves. This section will outline the management capabilities
associated with both.

8.2.1. Event Processor Network Manager

Object Name: overlord.rtgov.networks:name=EPNManager

The Event Processor Network Manager is the component responsible for registering and
initializing the Event Processor Networks within a containing environment.

106

Event Processor Networks

If supported, the manager’s attributes and notifications can be exposed via JMX. Currently the
attributes that are available:

Attribute Description

NumberOfNetworks This attribute defines the number of networks
registered in the manager.

8.2.2. Event Processor Networks

Object Name: overlord.rtgov.networks:name=<name>,version=<version>

When a network is registered, if within a JEE environment, it will also be registered as a managed
bean, and therefore available via JMX. Each network provides the following attributes:

Attribute Description

LastAccessed When the network was last used to process
an event. This can be used to determine
when it is safe to remove/unregister a

network.
Name The name of the network.
Version The version of the network.

For example, using the JConsole:

107

Chapter 8. Managing The Infra...

Connection Window Help

Overview| Memory | Threads Classesl VM Summary| MBeans | =l=
P IMImplementation Attribute values
com.sun.management [Name][VaLue]
P java lana
P iava nio LastAccessed Thu Jan 01 01:00:00 GMT 1970
P java util logaing Name SLAMoniterEPN
iboss.as WVersion 1
P iboss.as.expr
b iboss isr77
P iboss jta

P iboss modules

P iboss.msc
iboss . remoting.handler

P iboss.ws

P net.sf.ehcache

P ora.apache.camel

P ora.switchyard.admin

P overlord rtgov.collections
overlord rtgov.collector

~ overlord rtaov.networks
b AssessCreditPolicvE PN
b @ EPNManager
P Overlord-RTGov-EPN
¥ SLAMoniterEPN

v @9

P overlord rtaov services

[Iﬁl pid: 6664 jboss-modules jar -mp /home/gbrown/testing/overlord/release/jbo l

(<] m

Figure 8.2.

8.3. Managing the Active Collections

There are two aspects to managing the Active Collections mechanism, the manager component
and the collections themselves. This section will outline the management capabilities associated
with both.

8.3.1. Active Collection Manager

Object Name: overlord.rtgov.collections:name=CollectionManager

The Active Collection Manager is the component responsible for registering and initializing the
Active Collection Sources within a containing environment.

If supported, the manager’s attributes and natifications can be exposed via JMX. Currently the
attributes that are available:

Attribute Description

HouseKeepinglinterval The number of milliseconds between each
house keeping cycle. The house keeping
refers to removing items from collections
if they are either expired, or the maximum

108

Active Collections

Attribute Description

number of elements in the collection has been
reached.

8.3.2. Active Collections

Object Name: overlord.rtgov.collections:name=<ActiveCollectionSourceName>

When a source is registered resulting in an Active Collection being created, if within a JEE
environment, the Active Collection will also be registered as a managed bean, and therefore
available via JMX. Each collection provides the following attributes:

Attribute Description

HighWaterMark

ItemExpiration

If the number of items in the collection
reaches this value, then a warning will be
issued. If zero, then does not apply.

The number of milliseconds before an item
in the collection should be removed. If zero,
then does not apply.

Maxltems The maximum number of items that should be
in the collection. If zero, then does not apply.

Name The name of the Active Collection.

Size The number of items in the collection.

For example, using the JConsole:

109

Chapter 8. Managing The Infra...

Connection Window Help

Overviewl Memory I Threads Classesl VM Summary | MBeans =l=
P IMImplementation rAttribute values
com.sun.management [Name][VaLue]
P java lana -
b java.nio HighWaterMark [+]
P java.util loaaing ItemExpiration 40000
iboss.as Max ltems 0
P iboss.as.expr Name Situations
P iboss.isr77 Size 0
P iboss jta

P iboss modules
P iboss.msc
iboss . remoting.handler
P iboss.ws
P net.sf.ehcache
P ora.apache.camel
P ora.switchyard.admin
~ overlord rtaov.collections
¥ @ CollectionManaaer |-
b Attributes
P Notifications
¥ @ Service Definitions
P Attributes
¥ @ ServiceResponseTim
P Attributes
¥ @ Situations
Attributes
P overlord rtgov.collector
P overlord.rtaov.networks
P overlord rtgov.services

[@ pid: 6664 jboss-modules jar -mp /home/gbrown/testing/overlord/release/jbo

Figure 8.3.

110

	Runtime Governance: User Guide
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	2.1. Setup Target Environment
	2.1.1. JBoss EAP or Wildfly

	2.2. Further Configuration
	2.2.1. Database
	2.2.1.1. Elasticsearch
	2.2.1.2. SQL

	2.3. Test the installation using the samples
	2.3.1. JBoss EAP
	2.3.1.1. Order Management
	2.3.1.2. Policy
	2.3.1.3. SLA

	2.4. JBoss EAP Specific Information
	2.4.1. SQL Database
	2.4.2. Caching

	Chapter 3. Visualising the Runtime Governance Information
	3.1. Accessing the Runtime Governance UI
	3.2. Services
	3.3. Situations
	3.3.1. Situation Lifecycle

	3.4. Analytics
	3.4.1. Dashboard
	3.4.1.1. Response Times
	3.4.1.2. List of Services
	3.4.1.3. Faults
	3.4.1.4. Distribution over time
	3.4.1.5. Operations
	3.4.1.6. Documents

	3.4.2. Changing the Time Frame and Refresh Cycle
	3.4.3. Filtering by selection
	3.4.4. Segmenting information by query
	3.4.5. Adhoc queries
	3.4.6. Customizing and sharing the Dashboard

	Chapter 4. Reporting Activity Information
	4.1. Integrated Activity Collector
	4.1.1. Supported Environments
	4.1.1.1. SwitchYard
	4.1.1.2. OSGi Application

	4.1.2. Information Processor
	4.1.2.1. Defining the Information Processors
	4.1.2.2. Registering the Information Processors

	4.1.3. Activity Validation
	4.1.3.1. Defining the Activity Validators
	4.1.3.2. Registering the Activity Validators

	4.2. Reporting and Querying Activity Events via REST
	4.2.1. Reporting Activity Information
	4.2.2. Querying Activity Events using an Expression
	4.2.3. Retrieving an Activity Unit
	4.2.4. Retrieve Activity Events associated with a Context Value

	Chapter 5. Analyzing Events
	5.1. Configuring an Event Processor Network
	5.1.1. Defining the Network
	5.1.1.1. Subscription
	5.1.1.2. Node

	5.1.2. Registering the Network
	5.1.2.1. JEE Container
	5.1.2.2. OSGi Container

	5.1.3. Supporting Multiple Versions

	5.2. Event Processors
	5.2.1. Drools Event Processor
	5.2.2. JPA Event Processor
	5.2.3. Mail Event Processor
	5.2.4. MVEL Event Processor
	5.2.5. Supporting Services
	5.2.5.1. Cache Manager

	5.3. Predicates
	5.3.1. MVEL Predicate

	Chapter 6. Accessing Derived Information
	6.1. Configuring Active Collections
	6.1.1. Defining the Source
	6.1.1.1. Scripts
	6.1.1.2. Derived Active Collections
	6.1.1.3. Active Change Listeners
	6.1.1.4. Factory

	6.1.2. Registering the Source
	6.1.2.1. JEE Container
	6.1.2.2. OSGi Container

	6.2. Presenting Results from an Event Processor Network
	6.3. Publishing Active Collection Contents as JMX Notifications
	6.4. Querying Active Collections via REST
	6.5. Pre-Defined Active Collections
	6.5.1. ServiceResponseTimes
	6.5.2. Situations
	6.5.3. ServiceDefinitions
	6.5.4. Principals

	Chapter 7. Available Services
	7.1. Call Trace
	7.2. Report Server
	7.2.1. Creating and deploying a report definition
	7.2.1.1. Registering the Report

	7.2.2. Generating an instance of the report
	7.2.3. Providing a custom Business Calendar

	7.3. Service Dependency
	7.3.1. How to customize the severity levels

	7.4. Situation Manager
	7.4.1. Ignoring situations related to a subject
	7.4.2. Observing situations related to a subject

	Chapter 8. Managing The Infrastructure
	8.1. Managing the Activity Collector
	8.1.1. Activity Collector
	8.1.2. Activity Logger

	8.2. Managing the Event Processor Networks
	8.2.1. Event Processor Network Manager
	8.2.2. Event Processor Networks

	8.3. Managing the Active Collections
	8.3.1. Active Collection Manager
	8.3.2. Active Collections

